大模型的实践应用16-一种针对大型预训练模型的微调技巧:Adapter-Tuning方法的实战应用,原理详细介绍

本文介绍了Adapter-Tuning方法,这是一种在不大幅增加参数数量的情况下提升大模型微调效果的技巧。通过在预训练模型中插入小的可训练层(适配器),仅更新这些附加层的参数,从而提高效率和速度。文中详细阐述了Adapter的数学原理,并提供了使用Hugging Face Transformers库在PyTorch中微调BERT模型的实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是微学AI,今天给大家介绍一下大模型的实践应用16-一种针对大型预训练模型的微调技巧:Adapter-Tuning方法的实战应用,原理详细介绍。Adapter-Tuning 是一种针对大型预训练模型微调的技术,它可以在保持模型参数数量较小的情况下增加模型的表现。该技术将适配器插入到预训练模型的中间层中,以允许微调特定任务时仅修改少量的参数,从而提高了微调的效率和速度。
与传统的微调方法不同,Adapter

一、介绍

在NLP领域,微调预训练大模型是NLP研究过程中重要的部分,微调大模型的技术研究这些年有着飞跃的发展。微调通常涉及更新这些大型模型的所有参数,我们可能会耗费大量的计算资源和时间。在2019年的论文“Parameter-Efficient Transfer Learning for NLP ”中使用了Adapter-Tuning方法,该方法通过引入少量的参数,使得大模型的微调变得更高效,Adapter-Tuning方法是在预训练模型中引入了Adapter模块,同时保持原有参数不变进行训练。例如在transformer模型的某些层中加入适配器模块层,在训练的时候原理的参数不变,只训练适配器模块层的参数,这样可以大大节省计算资源以及训练时间。

二、Adapter-Tuning的数学原理

Adapter-Tuning的核心思想是在预训练模型中插入小的可训练层或"适配器"。从数学上讲,这些适配器可以被理解为在模型的不同层次上转换表示的函数。

让我们考虑一个transformer模型,有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值