
视频结构化从入门到精通
文章平均质量分 94
视频结构化整理内容
小陈phd
哇咔咔,过拟合,我跟你拼了;V:SWPUCWF 欢迎技术交流
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
视频结构化从入门到精通——视频结构化技术应用难点
随着视频数据在智能安防、智能交通、零售分析等领域的广泛应用,视频结构化技术成为了提取视频信息的关键。然而,在实际应用中,这项技术面临着诸多挑战。本文将深入探讨这些难点,并提供可能的解决方案和未来展望。原创 2024-08-31 10:01:42 · 1456 阅读 · 0 评论 -
视频结构化从入门到精通———检索比对类应用
和是信息处理和数据分析中常见的两种操作,虽然二者在一定程度上都有涉及到信息的提取和分析,但其侧重点和应用场景有所不同。主要关注从大规模数据集中定位相关信息,而则关注对特定数据对象进行详细比较和相似度分析。二者在信息处理中的角色各有侧重,检索适合于快速找到可能的候选项,而比对则用于精确地判断候选项之间的匹配度。原创 2024-08-31 09:01:49 · 1394 阅读 · 0 评论 -
视频结构化从入门到精通——行为分析类应用
每一帧中,系统首先使用卡尔曼滤波器预测目标的当前位置,然后计算预测位置和检测到的位置之间的IoU。在一些城市的繁忙街道,行为分析系统用于监控行人和非机动车的行为。基于IoU的目标关联方式是指通过计算当前帧中检测到的目标边界框与上一帧跟踪目标边界框的IoU值,来判断它们是否属于同一目标。这些行为分析应用通过智能化手段,大大提升了交通管理、公共安全和社区服务的效率与质量,促进了智慧城市的建设和发展。是SORT的改进版本,结合了IoU、位置预测以及特征匹配,显著提升了多目标跟踪的准确性和鲁棒性。原创 2024-08-30 23:09:37 · 1689 阅读 · 0 评论 -
视频结构化从入门到精通——GPU主要硬件平台介绍
NVIDIA 的软件生态系统由一系列高性能计算和深度学习的开发工具和库组成。这些工具与 NVIDIA GPU 硬件紧密集成,专为优化图形计算、深度学习模型训练和推理而设计。以下是 NVIDIA 生态系统中几个关键组件的介绍,包括 TensorRT、DeepStream、CUDA、cuDNN 和 Codec SDK。原创 2024-08-30 22:00:53 · 2033 阅读 · 0 评论 -
视频结构化从入门到精通——图像算法类型介绍
在图像算法中,“维度”这个概念非常重要,它描述了数据的结构和形状。在不同的上下文中,维度可能有不同的含义,但总体来说,它们都与数据的排列方式和复杂度有关。原创 2024-08-30 17:37:40 · 2122 阅读 · 0 评论 -
视频结构化从入门到精通——视频结构化主要技术介绍
数据中介指的是处理管道中的最后一个处理环节或模块,它负责将原始视频经过一系列处理步骤(如目标检测、跟踪、行为识别等)后生成的结构化数据输出。检测结果:包括目标的类别、边界框坐标、置信度等信息。跟踪数据:目标在视频中的轨迹数据,包括时间戳、位置信息等。行为分析结果:对目标行为或事件的分析结果,如异常行为检测、活动分类等。标签化数据:将视频片段进行分类或打上标签,用于进一步的检索或分析。原创 2024-08-29 00:20:09 · 3131 阅读 · 0 评论 -
视频结构化从入门到精通——认识视频结构化
非结构化数据指的是未经处理、以原始形式存在的数据。这类数据是直接采集、记录的,包含了音频、视频等多维信息,且没有任何标签、注释或分类来表示其中的内容。非结构化数据需要进一步处理和解析,才能提取出有用的信息。定义:计算机(程序)无法直接理解,无法对其进行查询、比对、分类、计算等操作。原创 2024-08-28 21:33:58 · 2835 阅读 · 0 评论