深度学习中的偏差和方差

博客介绍了深度学习中偏差和方差的意义,偏差是预测值与真实值的误差,方差是训练与测试数据集精度差异。还指出低偏差低方差是期待结果,欠拟合是高偏差低方差,过拟合是低偏差高方差,低偏差低方差是较好拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

偏差和方差的意义

深度学习中,偏差指的是预测值和真实值之间的误差,方差可以理解为训练数据集精度和测试数据集精度之间的差异。下表则表示在训练神经网络时可能出现的结果,低偏差低方差则是我们期待的结果。

12345
训练集误差10%10%1%1%
测试集误差20%10.5%20%1.5%
结果高偏差高方差高偏差低方差低偏差高方差低偏差低方差

用图片表示则如下图,图1为欠拟合,可以理解为是高偏差低方差,图3是过拟合,可以理解为是低偏差高方差,这两种结果都不是最优的状态。图2则为可以理解为低偏差低方差,是比较好的拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值