大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣]
一、入门级自动化机器学习库
1.1 Auto-Sklearn
简介: Auto-Sklearn 是一个自动机器学习库,基于 Python 的 scikit-learn 接口。它主要用于自动化机器学习的常见过程,特别是算法选择和超参数调整,通过元学习和贝叶斯优化来提高模型性能。
主要功能:
- 自动化算法选择:自动选择最适合数据的机器学习算法。
- 超参数自动调整:使用贝叶斯优化技术找到最优的超参数配置。
- 并行计算:支持多核处理,加快模型训练速度。
- 模型集成:自动集成多个模型以提高预测准确率。
应用实例: 下面是一个使用 Auto-Sklearn 自动化分类任务的简单示例。我们将使用经典的鸢尾花数据集。
import autosklearn.classification as auto_cls
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建一个自动化分类器
automl_classifier = auto_cls.AutoSklearnClassifier(time_left_for_this_task=120, per_run_time_limit=30)
# 训练模型
automl_classifier.fit(X_train, y_train)
# 预测测试数据
y_pred = automl_classifier.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"模型准确率: {accuracy:.2f}")
1.2 TPOT
简介: TPOT(Tree-based Pipeline Optimization Tool)是一个利用遗传算法自动化设计机器学习管道的Python库。它自动化地搜索预处理步骤、模型和参数配置的最佳组合,旨在发现性能最优的机器学习管道。
主要功能:
- 自动化管道构建:自动探索数据预处理、特征选择、模型选择和超参数调整的最佳组合。
- 遗传算法优化:使用遗传算法来优化机器学习的整体工作流。
- 并行计算:支持多进程,加速搜索过程。
- 易于集成:可以与 scikit-learn 无缝集成,方便使用已有的数据处理和评估方法。
应用实例: 以下是使用 TPOT 对波士顿房价数据集进行回归分析的示例。这个例子展示了如何利用 TPOT 自动化搜索最优的机器学习管道。
from tpot import TPOTRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载数据集
data = load_boston()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.25, random_state=42)
# 创建一个 TPOT 回归器,设置最大的管道评估数量为 100,世代数为 5
tpot = TPOTRegressor(generations=5, population_size=100, verbosity=2, random_state=42)
# 训练模型
tpot.fit(X_train, y_train)
# 预测测试集
y_pred = tpot.predict(X_test)
# 计算 MSE
mse = mean_squared_error(y_test, y_pred)
print(f"测试集的均方误差为: {mse:.2f}")
# 导出最佳模型的 Python 代码
tpot.export('best_pipeline.py')
1.3 Auto-Keras
简介: Auto-Keras 是一个开源的自动机器学习库,建立在 Keras 框架之上。它主要设计用于自动化搜索最优的深度学习模型结构和超参数,从而简化了构建高效深度学习模型的过程。
主要功能:
- 神经架构搜索(NAS):自动寻找最适合特定数据集的网络结构。
- 超参数优化:自动调整网络的超参数,如学习率、层数、单元数等。
- 模型压缩:提供模型压缩工具,以减小模型大小和提高效率。
- 简易接口:提供简单的 API,用户只需几行代码即可启动模型搜索和训练。
应用实例: 以下是使用 Auto-Keras 进行图像分类任务的示例。此示例使用 CIFAR-10 数据集,展示了如何自动搜索适合该任务的模型结构。
import autokeras as ak
from keras.datasets import cifar10
# 加载数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 创建一个图像分类器
clf = ak.ImageClassifier(max_trials=10) # 最大尝试次数设为 10
# 搜索模型
clf.fit(x_train, y_train, epochs=10)
# 评估模型
accuracy = clf.evaluate(x_test, y_test)
print(f"测试准确率: {accuracy[1]:.2f}%")
# 获取最佳模型
model = clf.export_model()
model.save('best_model_autokeras.h5')
1.4 FeatureTools
简介: FeatureTools 是一个开源的 Python 库,专注于自动化特征工程。它可以高效地生成大量的特征,帮助机器学习模型学习更多的潜在信息,从而提升模型的预测能力。
主要功能:
- 深度特征合成(DFS):通过组合和变换数据集中的基础数据列,自动构建复杂的特征。
- 时间索引:处理时间数据,自动识别和构造与时间相关的特征。
- 可扩展性:优化内存使用,能够处理大型数据集。
- 易于集成:可以与 Pandas 和 scikit-learn 等流行的数据科学工具无缝集成。
应用实例: 以下是一个使用 FeatureTools 进行客户购买预测的示例,通过自动构建特征来提升模型性能。
import featuretools as ft
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 模拟一些示例数据
data = {
'transaction_id': [1, 2, 3, 4, 5],
'customer_id': [1, 2, 1, 3, 4],
'amount': [100, 200, 200, 300, 100],
'transaction_time': pd.to_datetime(['2021-01-01', '2021-01-02', '2021-01-02', '2021-01-03', '2021-01-03'])
}
transactions = pd.DataFrame(data)
# 创建一个