算法金 | 再见!!!KNN


大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」

KNN算法的工作原理简单直观,易于理解和实现,这使得它在各种应用场景中备受青睐。

我们将深入探讨KNN算法,从基本概念到实现细节,从算法优化到实际应用,我们都会一一展开。通过本文,你将了解到KNN算法的核心要点,以及如何将这一强大的工具应用到实际问题中。

第一部分:KNN算法的基本概念

定义

KNN算法,全称为K-Nearest Neighbors,是一种基于实例的学习算法,或者说是一种基于记忆的学习方法。它的核心思想是,通过一个样本的K个最近邻居的多数属于某个类别,来预测该样本的类别。

工作原理

KNN算法通过以下步骤进行分类或回归:

  1. 确定距离度量:首先确定一个距离度量方法,如欧氏距离或曼哈顿距离。
  2. 寻找最近邻居:计算待分类样本与数据集中每个样本的距离,并找出距离最近的K个样本。
  3. 决策:在分类任务中,通过多数投票法决定待分类样本的类别;在回归任务中,则通过计算K个最近邻居的属性的平均值来预测。

算法特点

KNN算法具有以下显著特点:

  • 简单性:算法原理简单,易于理解和实现。
  • 无需训练:不需要训练阶段,直接使用整个数据集进行预测。
  • 自适应性:随着数据集的变化,KNN算法可以自适应地调整其预测结果。

第二部分:KNN算法的工作原理

距离度量

在KNN算法中,距离度量是确定样本之间相似性的关键。以下是几种常用的距离度量方法:

寻找最近邻居

确定一个样本的K个最近邻居涉及以下步骤:

  1. 计算距离:对于数据集中的每个点,使用选定的距离度量计算与待分类样本的距离。
  2. 排序:根据计算出的距离对所有点进行排序。
  3. 选择邻居:选择距离最小的前K个点作为最近邻居。

多数投票法(分类任务)

在分类任务中,KNN算法通过以下步骤进行决策:

  1. 收集标签:收集K个最近邻居的类别标签。
  2. 统计:统计每个类别的出现次数。
  3. 投票:选择出现次数最多的类别作为待分类样本的预测类别。

平均值法(回归任务)

在回归任务中,KNN算法预测一个连续值,通常通过以下步骤:

  1. 收集属性值:收集K个最近邻居的属性值。
  2. 计算平均值:计算这些属性值的平均值。
  3. 预测:将平均值作为待分类样本的预测结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值