大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」
KNN算法的工作原理简单直观,易于理解和实现,这使得它在各种应用场景中备受青睐。
我们将深入探讨KNN算法,从基本概念到实现细节,从算法优化到实际应用,我们都会一一展开。通过本文,你将了解到KNN算法的核心要点,以及如何将这一强大的工具应用到实际问题中。
第一部分:KNN算法的基本概念
定义
KNN算法,全称为K-Nearest Neighbors,是一种基于实例的学习算法,或者说是一种基于记忆的学习方法。它的核心思想是,通过一个样本的K个最近邻居的多数属于某个类别,来预测该样本的类别。
工作原理
KNN算法通过以下步骤进行分类或回归:
- 确定距离度量:首先确定一个距离度量方法,如欧氏距离或曼哈顿距离。
- 寻找最近邻居:计算待分类样本与数据集中每个样本的距离,并找出距离最近的K个样本。
- 决策:在分类任务中,通过多数投票法决定待分类样本的类别;在回归任务中,则通过计算K个最近邻居的属性的平均值来预测。
算法特点
KNN算法具有以下显著特点:
- 简单性:算法原理简单,易于理解和实现。
- 无需训练:不需要训练阶段,直接使用整个数据集进行预测。
- 自适应性:随着数据集的变化,KNN算法可以自适应地调整其预测结果。
第二部分:KNN算法的工作原理
距离度量
在KNN算法中,距离度量是确定样本之间相似性的关键。以下是几种常用的距离度量方法:
寻找最近邻居
确定一个样本的K个最近邻居涉及以下步骤:
- 计算距离:对于数据集中的每个点,使用选定的距离度量计算与待分类样本的距离。
- 排序:根据计算出的距离对所有点进行排序。
- 选择邻居:选择距离最小的前K个点作为最近邻居。
多数投票法(分类任务)
在分类任务中,KNN算法通过以下步骤进行决策:
- 收集标签:收集K个最近邻居的类别标签。
- 统计:统计每个类别的出现次数。
- 投票:选择出现次数最多的类别作为待分类样本的预测类别。
平均值法(回归任务)
在回归任务中,KNN算法预测一个连续值,通常通过以下步骤:
- 收集属性值:收集K个最近邻居的属性值。
- 计算平均值:计算这些属性值的平均值。
- 预测:将平均值作为待分类样本的预测结果。