ISLR读书笔记八:交叉验证法(Cross-Validation)

本文详细介绍了交叉验证方法,包括校验集、留一法和k折交叉验证。留一法通过每次使用一个观测数据作为校验集,计算多个MSE的平均值,减少了偏差但可能在大数据时计算量大。k折交叉验证则将数据分成k份,轮流作为校验集,提供更稳定且易于计算的测试误差估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

交叉验证法(Cross-Validation)

前言

本篇的交叉验证法(Cross-Validation)和下篇的自助法(bootstrap)都是重采样方法(resampling methods)。重采样方法指重复地从训练集中选取数据进行拟合,以得到拟合模型的更多信息。交叉验证法可以用于评估测试误差或者选取合适的灵活度(flexibility),自助法多用于评估参数估计的准确性。本篇讲的是交叉验证法,包括校验集方法(The Validation Set Approach),留一法(Leave-One-Out Cross-Validation),k折交叉验证(k-Fold Cross-Validation)

校验集方法

交叉验证法指的是将观测数据随机地分成训练集(training set)和校验集(validation set)两部分。训练集用于拟合模型,校验集用于测试拟合模型的效果好坏。

校验集方法
校验集方法的优点是概念简单,容易实施。缺点主要有两点:

  1. 由于划分的随机性,校验集上得到的测试误差估计,可能会有很高的差异
  2. 只有一部分数据用于训练,可能高估测试误差。

留一法

留一法同样将观测数据分为训练集和校验集两部分,但是有两点不同:一个是只有一个数据用于校验集,其余数据用于训练集。还有一个不同是,假如有 n n n 个观测数据,留一法重复进行了 n n n 次校验集方法的操作,每次的校验集均不相同,可以得到 n n n M S E MSE MSE
留一法用留一法得到的对测试 M S E MSE MSE 的估计可以用下式表示:
C V ( n ) = 1 n ∑ i = 1 n M S E i CV_{(n)}=\frac{1}{n}\sum_{i=1}^nMSE_i CV(n)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值