内网部署VLLM+本地大模型,避坑指南
安装vllm
通过docker容器的形式拉包,非pip包部署!不包含nvidia的驱动安装,默认已经有gpu卡!
容器拉vllm最新的包
在外网电脑docker拉包,注意这里包是不能断点续传的找个网络好的环境一次性下载完,总体大约16G,我的是0.8.1版本。
docker pull vllm/vllm-openai:latest
容器打包镜像
docker save -o vllm_image.tar vllm/vllm-openai:latest
内网容器加载镜像
docker load -i vllm_image.tar
docker images # 查看是否已经加载成功
下载模型文件
模型搜索下载可以点击https://hf-mirror.com/
vllm当前版本可以支持的模型参考https://vllm.hyper.ai/docs/models/supported-models
注意:这里需要评估一下自己卡的gpu是不是够,如果一张15G的卡要启动17G的模型是起不来的!
模型copy目录
mkdir /vllm/models # 内网创建模型读取的目录
在外网下载好全部的模型文件,一般包括配置文件config.json/params和.pth/.onnx/model.safetensors等,整个文件包都要下载下来。在内网解压后以模型命名存储在文件夹里,绝对路径为:/vllm/models/bge-reranker-v2-m3/
[root@localhost models] ll
tot