
python语言
文章平均质量分 87
讲解关于python的知识点
Hello.Reader
so far away
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
模型蒸馏(Knowledge Distillation)以 Gemma‑3 为例
本文提出了一套系统化的知识蒸馏(KD)方法框架,从标准化定义到工程实践,重点针对Gemma-3模型家族进行优化。文章首先给出知识蒸馏的数学形式化表达,分析温度参数对梯度平滑的影响。随后系统梳理了8大类蒸馏方法(响应式、特征、注意力、关系等)及其适用场景,特别强调响应式KD作为首选基线方法的优势。针对Gemma-3模型,文章提供了详细的工程决策建议,包括教师-学生模型选型、训练范式、数据增强策略等。最后给出了完整的可复现训练框架代码,涵盖教师缓存、学生训练等关键环节,支持LoRA/QLoRA微调,并集成了响应原创 2025-08-29 11:28:59 · 563 阅读 · 0 评论 -
一文吃透训练误差 vs. 泛化误差
Train/Val/Test = 8/1/1(小数据用 K 折)。切(Train ≤ Val ≤ Test),避免“穿越”。:用最简单的回归任务展示“复杂度越高→越容易过拟合”。拟合 scaler,再作用于 Val/Test。:扩大样本覆盖面(新时间段/新人群/新设备)。经验法则:看到 Val 指标开始反弹,就是“若是多标签/回归,换损失函数即可。二者之间的差距,就是模型能否。而你在训练时优化的却是。:修正错标、剔除异常。:重采样/加权损失。原创 2025-08-22 13:59:08 · 824 阅读 · 0 评论 -
一文读懂 BLIP统一的视觉-语言理解与生成
BLIP是一种统一的多模态模型,既能理解图像(如检索、问答)又能生成描述。它通过自举式数据清洗,结合网络图文的大规模性和高质量监督,显著提升了性能。BLIP采用ViT-L视觉编码器和文本编码/解码器架构,支持图像文本对比(ITC)、匹配(ITM)和描述生成(LM)三种训练目标。实验显示,BLIP在图文检索、图像描述和VQA任务上均有显著提升。使用Hugging Face的transformers库可快速部署BLIP模型,支持CPU/GPU、半精度和批量处理,通过条件式或无条件方式生成图像描述。BLIP的&q原创 2025-08-18 10:16:43 · 868 阅读 · 0 评论 -
图注意力网络(GAT)从直觉到工程落地
图注意力网络(Graph Attention Network, GAT)通过可学习的注意力权重替代“邻居平均”,在异质、噪声或稀疏的图上更具鲁棒性与可解释性。本文从 GCN→GAT 的动机入手,推导核心公式,剖析复杂度与常见变体(GATv2、边注意力等),给出可运行的 PyG 代码、大图训练策略、注意力可视化与调参模板,帮助你在生产业务中高效落地。原创 2025-08-15 13:40:23 · 866 阅读 · 0 评论 -
“混搭”大模型蓝图(通用而强)局部注意力 × SSM × 检索 × 工具 × Entmax 稀疏融合
这套“局部注意力 × SSM × 检索 × 工具 × Entmax”的混搭蓝图,本质是把表征、记忆、知识、计算、选择让近场和远程不再二选一;让事实与计算外包到最擅长的系统;用稀疏门控让模型学会克制与选择。在实践中,它能以更低复杂度与更强可控性支撑更长的上下文与更复杂的任务,成为“通用而强”的默认基线。原创 2025-08-14 10:00:00 · 937 阅读 · 0 评论 -
一文读懂注意力机制从上手案例到工程实现
线性层用 xavier/kaiming;注意 LayerNorm 放置(Pre-LN 更稳定)。:FP16/BF16 要注意溢出;Causal mask 在解码器里必须启用。:常见 8、12、16。过多会增常数开销且每头维度过小。,是现代 Transformer 的要害。差异只在于“怎么打分”。想象你在看一段英文句子,想翻译其中“维度相同(通常通过线性投影满足)。来自同一序列(例如同一句话)。来自编码端(经典翻译器结构)。,并把相关信息“聚合”成答案。更相似,模型更“注意”到。你会下意识地在上下文里。原创 2025-08-14 07:15:00 · 415 阅读 · 0 评论 -
gpt-oss 全量技术解读
全文覆盖 gpt-oss(120b/20b)的能力与落地方案:Harmony 与 Agent、各推理后端的启动方式、环境与权重下载、单卡 80GB 运行要点、Clients 接入与安全实践,助力从验证到部署的高效实施。原创 2025-08-09 11:27:44 · 880 阅读 · 0 评论 -
序列搜索策略从传统算法到大模型时代的新解码
本文系统介绍了自然语言生成中的搜索解码策略。首先分析贪心搜索、穷举搜索和束搜索等经典方法,剖析其优缺点和适用场景。接着重点探讨了大模型时代的新型解码技术,包括Top-p采样、对比搜索、Speculative Decoding等,分析了算法原理和实际应用。文章还提供了选型建议,针对不同需求场景推荐相应策略。最后展示了Top-p与对比搜索结合的伪码实现,并展望了未来发展方向。全文既涵盖了基础理论,又关注前沿进展,为在实际项目中优化生成效果提供了实用指导。原创 2025-08-08 07:00:00 · 710 阅读 · 0 评论 -
以 Eland 玩转 Elasticsearch 8.12 Learning-to-Rank
Elasticsearch 8.12.0引入Serverless LTR功能,可直接在搜索重排阶段调用机器学习模型,解决传统BM25相关性不足的问题。该方案通过Python(Eland+XGBoost/LightGBM/scikit-learn)实现端到端流程:1)定义特征抽取模板;2)采集训练数据;3)训练排序模型;4)一键部署至ES集群。相比外部微服务方案,具有运维简单、延迟低等优势。使用时需注意特征数量控制(20-40个)、训练数据采集性能优化等实践要点。新特性适合需要结合业务指标(点击率、销量等)优原创 2025-08-07 11:16:21 · 622 阅读 · 0 评论 -
LangExtract用 LLM 一键完成长文档信息抽取与可视化
LangExtract 是 Google 开源的指令式信息抽取框架,可同时兼容 Gemini、OpenAI 及本地 Ollama 模型。它通过“分块+并行+多轮抽取”解决长文档难题,并以源文本锚点保证结果可追溯,输出格式严格遵循用户自定义 JSON Schema。此外,LangExtract 支持一键生成交互式 HTML 文件,方便快速审阅与验证抽取实体。本文系统介绍了其核心特性、安装与快速上手三步法,以及在医疗、金融等场景中的实战经验与踩坑提示,帮助开发者低成本构建可靠的结构化信息抽取流水线。原创 2025-08-07 10:42:11 · 1050 阅读 · 0 评论 -
FastMCP 2.0 服务器运行详解
FastMCP 2.0 提供了多种服务器启动方式:1)本地开发推荐使用 run() 和 STDIO 协议;2)Web 服务首选 Streamable HTTP 协议;3)异步环境使用 run_async()。CLI 工具支持一键启动、依赖管理和实时调试,同时支持自定义 Web 路由和健康检查。SSE 协议已弃用,建议迁移到 HTTP。部署方案涵盖 Docker、Serverless 和 K8s 等多种场景,开发者可根据需求灵活选择传输协议和运行方式。原创 2025-08-06 10:58:57 · 672 阅读 · 0 评论 -
5 分钟快速上手 FastMCP 2.0从 “Hello, MCP!” 到可调用的 LLM 工具
FastMCP 是一个用于构建和调用 MCP 工具的 Python 框架。本文介绍了快速入门方法:1) 使用 uv/pip 安装 fastmcp;2) 创建服务器文件定义工具函数(@mcp.tool装饰器);3) 通过异步Client或CLI命令(fastmcp run)调用工具。框架支持多工具注册、多种传输协议,并提供了生产部署方案。后续可扩展资源管理、LLM集成等高级功能。该框架简化了工具开发流程,支持Python直接运行和CLI托管两种模式。原创 2025-08-06 10:52:18 · 357 阅读 · 0 评论 -
FastMCP 2.0 安装与升级详解
FastMCP提供三种安装方式:普通项目推荐uv add fastmcp,一次性体验使用uv pip install fastmcp,开发者模式需git clone加uv sync。安装后通过fastmcp version验证版本。从旧版升级只需修改导入语句为from fastmcp import FastMCP。开发环境需运行pytest测试和pre-commit代码检查。注意minor版本可能包含破坏性变更,生产环境建议锁定版本。常见问题包括命令未找到、安装原创 2025-08-06 10:46:10 · 916 阅读 · 0 评论 -
FastMCP 2.0用最 Pythonic 的方式让 LLM 连接一切
FastMCP 2.0 = MCP 标准 + 全生命周期工具链开发:装饰器注册,一行mcp.run()起服务测试:自带 Mock & 回放,单元/契约测试全覆盖部署:CLI 一键 Docker/Serverless,上 Prod 无痛运维:Auth、监控、代理、组合统统内置如果你希望像写 FastAPI 一样快速打造面向 LLM 的工具集,FastMCP 2.0 会是目前最省心、最 Pythonic 的选择。,让你的 LLM 拿到“USB-C 通用接口”,连接一切资源与能力!原创 2025-08-06 10:42:27 · 817 阅读 · 0 评论 -
文件秒传Checksum机制
如果该文件的内容服务器端已存在,则 **客户端只需发送文件元信息(如 Checksum 和大小)而不必真正上传二进制数据**,从而实现“几百 MB 文件瞬间完成上传”的体验。原创 2025-07-05 17:35:23 · 1165 阅读 · 0 评论 -
redis-py 在 Python 中连接与使用 Redis
Redis 是一个开源的高性能键值数据库,redis-py 则是官方推荐的 Python 客户端。本指南介绍如何安装 redis-py、连接到 Redis 服务器、执行常见读写操作,以及获取更多进阶使用资源。原创 2025-05-28 10:58:56 · 614 阅读 · 0 评论 -
Manim让数学动画更有温度
在制作教学视频和可视化动画时,我们常常希望“不只是动起来”,还能“讲得通”,让观众一眼就明白画面所传递的数学或科学含义。Manim(Community Edition)正是专为此而生,它不仅能绘制各种几何图形、渲染复杂的数学公式,还能流畅地控制镜头和动画节奏。下面,我将通过几个特色示例,用“说故事”的方式带你领会 Manim 的魅力。原创 2025-04-23 16:20:19 · 1131 阅读 · 0 评论 -
FastAPI-MCP零配置一键将 FastAPI 接口暴露为 LLM MCP 工具
FastAPI-MCP 是一个零配置工具,用于自动将 FastAPI 端点公开为模型上下文协议(MCP)工具,并内置认证机制,帮助开发者快速将已有的 RESTful API 集成到 LLM 工具链中,无需额外编写转换或桥接代码。app,name="我的 API MCP",describe_all_responses=True, # 包含所有响应模式describe_full_response_schema=True # 包含完整 JSON Schema这样,MCP 工具中将展示更丰富的模式信息。原创 2025-04-23 15:08:48 · 1171 阅读 · 0 评论 -
Firecrawl LLM 时代的网站抓取神器
Firecrawl 提供了基于 LLM 的字段提取功能,称为。"name": "商品名","price": "价格","features": ["特点1", "特点2"]你可以在 API 调用中定义 schema,Firecrawl 会通过 LLM 提取相应数据,非常适合构建垂直领域的结构化爬虫。Firecrawl 是一个为大模型而生的 Web 内容抓取工具,它让复杂的爬虫逻辑变得简洁可控,让非结构化网页变成可被模型直接 ingest 的数据。AI 知识系统企业内容聚合平台。原创 2025-04-09 09:55:51 · 1071 阅读 · 0 评论 -
用 Python 也能做微服务?
不再是边缘脚本或 AI 推理单元可以参与统一的服务治理、注册中心、限流熔断、链路追踪与 Java / Go / Rust / Node.js 等语言并肩作战在微服务架构越来越多样化的今天,Dubbo Python SDK 为 Python 提供了一个生产级通道。原创 2025-03-24 13:12:23 · 1260 阅读 · 0 评论 -
使用 Python 从 NYU Depth V2 数据集mat文件提取 RGB 图像和深度图
**NYU Depth V2 数据集** 是计算机视觉研究者的宝藏。它包含了丰富的室内场景数据,包括 RGB 图像、深度图、语义标签等,非常适合用于深度估计、语义分割和 3D 场景理解等任务。在这篇博客中,我们将介绍如何使用 Python 从数据集的 `.mat` 文件中提取 RGB 图像和深度图,并将它们保存为 PNG 文件。无论你是为机器学习模型预处理数据,还是仅仅想探索这个数据集,本文都能帮你快速上手。原创 2025-03-02 16:36:55 · 1753 阅读 · 0 评论 -
通过IP地理定位获取经纬度坐标的全指南
在现代互联网中,公网IP地址是设备在全球网络中的唯一标识。地理定位则是根据这些IP地址确定设备的物理位置。通过IP获取经纬度坐标具有多种应用价值,例如个性化用户体验、地理分析和安全监控。这种技术不仅帮助企业理解用户分布,还能为内容提供更精准的定位服务,从而提升用户满意度和业务效率。IP地址(Internet Protocol Address)是网络中每个设备的唯一标识符。它允许设备之间进行通信。IPv4。原创 2024-09-29 08:30:00 · 6475 阅读 · 0 评论 -
外挂应用与MAC地址:技术、风险与防范
在当今数字化时代,外挂应用在游戏、软件和网络环境中广泛存在。这些应用通过修改程序行为或访问系统信息,提供额外功能或优势。然而,获取系统的MAC地址等关键信息常常是这些外挂的核心操作之一。MAC地址作为设备的唯一标识,能够在网络中进行识别和追踪,因此了解其获取方法对于提升安全性和防范滥用至关重要。本篇博客旨在深入探讨外挂应用如何获取系统MAC关键信息,并分析其潜在风险和防范策略。MAC地址(媒体访问控制地址)是网络接口控制器(NIC)分配的唯一标识符,用于在局域网中识别设备。原创 2024-09-29 09:15:00 · 1893 阅读 · 0 评论 -
探索上采样与下采样的技术平衡
在处理数据的过程中,无论是图像、音频还是其他信号数据,采样技术(上采样和下采样)都起着至关重要的作用。采样本质上是通过改变数据的分辨率或频率来进行操作,以便更好地适应不同的应用场景。上采样和下采样作为两种常见的采样方法,分别用于提高和降低数据的分辨率。采样是指将连续的信号或数据转换为离散的形式,并对其进行适当的处理。随着科技的发展,数据的多样性和复杂性不断增加,处理高维数据需要更多的计算资源,而采样技术则为这些挑战提供了解决方案。通过上采样,我们可以在不增加实际信息量的情况下提升数据的分辨率;原创 2024-09-12 08:30:00 · 1296 阅读 · 0 评论 -
Pytorch模型训练(一)
构建一个适合任务的神经网络模型至关重要。这里我们定义一个卷积神经网络(CNN),它能够有效地处理图像数据。# 第一个卷积层:输入为1个通道,输出为32个特征图,卷积核大小为3x3# 第二个卷积层:输入为32个通道,输出为64个特征图,卷积核大小为3x3# 最大池化层:池化窗口为2x2# 全连接层1:输入为64*7*7个节点,输出为128个节点# 全连接层2:输入为128个节点,输出为64个节点# 输出层:输入为64个节点,输出为10个类别# 前向传播,依次通过卷积层、激活函数、池化层、全连接层。原创 2024-09-05 09:45:00 · 1025 阅读 · 0 评论 -
掌握TensorFlow:构建您的第一个机器学习模型
TensorFlow是一个强大的开源软件库,专门用于数值计算,广泛应用于机器学习和深度学习领域。它由谷歌大脑团队开发,并自2015年起被用于谷歌内部研究和生产,TensorFlow支持多种语言,但主要通过Python提供高级API,同时也提供C++、Java等语言的较低级支持。# 构建一个线性模型])# 编译模型,指定优化器和损失函数。原创 2024-09-05 09:00:00 · 2252 阅读 · 0 评论 -
深入理解前向传播、反向传播和计算图
前向传播(Forward Propagation)是神经网络的推理过程。它将输入数据逐层传递,通过每一层的神经元计算,最终生成输出。反向传播(Backpropagation)是神经网络的训练过程,它通过计算损失函数的梯度来更新权重,从而最小化损失。在本文中,我们深入探讨了前向传播、反向传播和计算图的概念,并通过代码示例和图示帮助理解这些复杂的过程。希望这些内容能帮助你更好地理解神经网络的工作原理。通过这些详细的解释、代码示例和图示,你的读者应该能够深入理解前向传播、反向传播和计算图在神经网络中的作用。原创 2024-08-30 09:24:02 · 1190 阅读 · 0 评论 -
如何在 Hugging Face 上下载和使用模型—全面指南
Hugging Face 模型库包含多种类型的模型,每种模型适用于不同的任务。:主要用于文本分类、问答系统、命名实体识别等任务。BERT 是一种双向 Transformer 模型,可以捕捉句子中的上下文信息。:主要用于文本生成任务,如对话生成、故事续写等。GPT 是一种单向 Transformer 模型,擅长生成连续的文本。:这是 BERT 的一个改进版本,经过更大规模的数据和更长时间的训练,性能更为出色。原创 2024-08-27 08:00:00 · 35747 阅读 · 10 评论 -
Python项目替换requirements.txt
随着Python生态的不断发展,使用现代依赖管理工具已经成为项目管理的最佳实践。通过选择合适的工具和遵循最佳实践,你可以提高项目的可维护性和稳定性,减少开发中遇到的问题。让我们一起向requirements.txt说再见,拥抱更加高效和专业的Python项目管理方式。原创 2024-04-08 09:27:26 · 824 阅读 · 0 评论 -
Python中的 if __name__ == ‘__main__‘
通过这个简单的ifname== ‘main’:机制,Python为程序员提供了极大的灵活性和便利,使得我们可以轻松地管理代码的运行方式。就像在派对上区分主要活动和可以带回家的礼物一样,这帮助我们组织和分发Python代码,让它既能独立运行,也能被作为有用的工具和功能被其他程序所利用。原创 2024-04-08 09:12:40 · 581 阅读 · 0 评论 -
python模糊字符串匹配库fuzzywuzzy
Python的fuzzywuzzy库是一个强大的模糊字符串匹配工具,基于Levenshtein距离算法,可用于处理文本相似度匹配任务。本文将深入探讨fuzzywuzzy库的各种功能和用法,结合详细的描述和丰富的示例代码,带领大家全面了解这个工具的使用方法和实际应用场景。Github地址Python的fuzzywuzzy库是一个功能强大、灵活多样的模糊字符串匹配工具。通过使用fuzzywuzzy库,开发者可以轻松地进行字符串相似度比较、模糊匹配与排序等操作,应用于数据清洗、文本匹配、搜索引擎优化等实际场景中。原创 2024-03-28 11:08:04 · 3096 阅读 · 0 评论 -
Python最常用的库
本文章主要为大家总结,9个Python最常用的包及使用案例。原创 2024-03-14 14:24:31 · 825 阅读 · 0 评论