
时间序列分析
文章平均质量分 58
主要就是时序相关的
白炎灵
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
如何将普通索引转化为日期索引
把普通索引转为日期索引原创 2022-08-20 12:01:18 · 1300 阅读 · 1 评论 -
条件异方差模型
主要介绍条件异方差模型,ARCH模型和GARCH模型原创 2022-05-09 21:54:29 · 4398 阅读 · 0 评论 -
ARIMA模型来预测股票数据
ARIMA模型来预测股票收盘价原创 2022-04-27 21:05:52 · 6728 阅读 · 1 评论 -
时间序列分析基础总结
时间序列分析校内课程总结文章目录时序的一些基本定义特征统计量平稳序列平稳时间序列的统计性质平稳时间序列的检验白噪声序列白噪声序列的性质白噪声检验(纯随机性检验)时间序列预处理平稳序列建模原创 2022-04-27 13:07:07 · 4081 阅读 · 0 评论 -
an example of time series regression analysis
This passage will introduce an example of time series regression analysis.原创 2022-04-11 21:54:00 · 420 阅读 · 0 评论 -
用R画时序图、(偏)自相关图
画时序图install.packages("readxl")library(readxl)te <- read_xls("D:/data/Rdata/tsdata.xls")temp <- ts(te$温度,start=1949)plot(temp)本来用的函数是read.table(),但是一会儿中文乱码的,一会儿报错的,就选择了readxl库去读取xls文件。ts函数可以生成类型是Time Sreies的时序数据,然后直接plot就可以画出时序图,横坐标默认是Time,纵坐标原创 2022-03-21 21:26:37 · 7120 阅读 · 0 评论 -
时间序列分解
时间序列可以表示为4个因素的函数,这四个因素分别为:长期趋势(Secular trend T)、季节变动(Seasonal Variation S)、循环波动(Cyclical Variation C)、不规则波动(Irregular Variation I)。Yt=f(Tt,St,Ct,It)Y_t =f(T_t,S_t,C_t,I_t)Yt=f(Tt,St,Ct,It)长期趋势:较长时期内的一种趋势季节波动:季节变化引起的变动循环波动:以若干年为期限,不具规则的周期性变动不规则波动原创 2022-03-21 20:23:14 · 3713 阅读 · 1 评论 -
判断是否为节假日
在时间序列分析中,是否为节假日经常会对数据分析结果造成很大的影响,python中有一个chinese_calender包可以判断指定的一天是否为节假日。import datetimefrom chinese_calendar import is_workday, is_holidaydd = datetime.date(2022,3,13)print(is_workday(dd))Falseprint(is_holiday(dd))Trueprint(is_workday(datetime.原创 2022-03-14 10:21:21 · 1807 阅读 · 0 评论 -
时间序列分析方法汇总
时间序列规则法线性回归传统时序建模方法(ARIMA/ARMA模型)时间序列分解法特征工程+xgboost/LSTM等等监督学习数据集+xgboost/LSTM等等Facebook-prophet深度学习方法(attention)时间序列转为图像+CNN后面会一一填坑............原创 2022-03-14 09:59:15 · 2439 阅读 · 0 评论