xcLeigh
某IT公司项管,码龄十五年,全栈工程师,人工智能应用高级工程师,CSDN博客专家,微信:xcLeigh2025,全网技术平台统一IP,全网流量超千万,全网粉丝超二十万,专注于产品测评宣传,推广活动策划,同时承接团队项目研发,毕业设计讲解答疑等,欢迎您的来信,合作共赢!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
低光照图像增强:从传统方法到深度学习
低光照图像增强:从传统方法到深度学习 人工智能,计算机视觉,大模型,AI,本文聚焦视觉模型的偏差与公平性问题,阐述了偏差在性别、种族、年龄等方面的表现及对医疗、司法、安防等领域的影响。分析了偏差源于数据采集与标注问题及算法局限。介绍了准确率差异等公平性评估指标、相关数据集和工具,还给出数据处理、算法改进、模型训练等避免歧视的策略,并附代码示例与实际案例,为提升视觉模型公平性提供多方面参考。原创 2025-08-01 08:40:18 · 517 阅读 · 65 评论 -
视觉模型的偏差与公平性:如何避免歧视?
视觉模型的偏差与公平性:如何避免歧视? 人工智能,计算机视觉,大模型,AI,本文聚焦视觉模型的偏差与公平性问题,阐述了偏差在性别、种族、年龄等方面的表现及对医疗、司法、安防等领域的影响。分析了偏差源于数据采集与标注问题及算法局限。介绍了准确率差异等公平性评估指标、相关数据集和工具,还给出数据处理、算法改进、模型训练等避免歧视的策略,并附代码示例与实际案例,为提升视觉模型公平性提供多方面参考。原创 2025-07-31 09:17:37 · 6127 阅读 · 23 评论 -
模型泛化能力提升:领域自适应与迁移学习
模型泛化能力提升:领域自适应与迁移学习 ,人工智能,计算机视觉,大模型,AI,在机器学习和深度学习的应用中,模型的泛化能力是一个关键问题。泛化能力指的是模型在新的、未见过的数据上表现良好的能力。然而,实际情况中,训练数据和测试数据往往来自不同的领域,存在分布差异,这会导致模型的泛化能力下降。领域自适应与迁移学习正是为了解决这一问题而发展起来的重要技术。原创 2025-07-31 09:17:12 · 6103 阅读 · 53 评论 -
对抗攻击与防御:如何保护视觉模型安全?
类别不平衡处理:Focal Loss与重采样策略 ,人工智能,计算机视觉,大模型,AI,视觉模型在处理图像时,会通过多层神经网络提取特征并做出判断。但这些模型存在一个弱点:对输入图像的微小改动非常敏感。对抗攻击就是利用这个弱点,在原始图像上添加人眼难以察觉的扰动,让模型做出错误判断。原创 2025-07-30 09:10:42 · 12278 阅读 · 40 评论 -
类别不平衡处理:Focal Loss与重采样策略
类别不平衡处理:Focal Loss与重采样策略 ,人工智能,计算机视觉,大模型,AI,在机器学习和深度学习的实际应用中,类别不平衡是一个非常常见的问题。它指的是在训练数据集中,不同类别的样本数量差异很大。比如在医疗诊断中,患有某种罕见疾病的样本可能只占总样本的百分之几,甚至更少;在欺诈检测中,欺诈交易的样本数量也远远少于正常交易的样本。这种不平衡的情况会对模型的训练和性能产生很大的影响,导致模型更倾向于预测数量多的类别,而忽略数量少的类别,从而降低模型的整体性能和可靠性。原创 2025-07-29 13:57:22 · 17589 阅读 · 41 评论 -
小样本视觉学习:如何解决数据不足问题?
小样本视觉学习:如何解决数据不足问题? ,人工智能,计算机视觉,大模型,AI,在计算机视觉领域,我们常常需要大量的数据来训练模型。但在很多实际场景中,数据是很难大量获取的,比如医学影像识别,收集大量不同病例的影像数据成本很高;再比如一些珍稀物种的图像识别,本身能获取的样本就很少。这时候,小样本视觉学习就派上了用场原创 2025-07-29 13:57:00 · 17512 阅读 · 32 评论 -
元宇宙中的视觉技术:虚拟化身与场景生成
元宇宙中的视觉技术:虚拟化身与场景生成 ,人工智能,计算机视觉,大模型,AI,在元宇宙的宏大架构中,虚拟化身与场景生成技术占据着举足轻重的地位,堪称元宇宙的视觉核心。虚拟化身是用户在元宇宙中的数字化身,代表着用户的独特身份和个性,它不仅是用户与虚拟世界交互的媒介,更是社交互动、情感表达的重要载体。而场景生成技术则负责构建元宇宙的虚拟环境,从繁华的都市到神秘的奇幻世界,从逼真的现实模拟到超现实的创意空间,场景生成技术让一切想象成为可能,为用户打造出一个又一个令人惊叹的虚拟世界。原创 2025-07-28 09:18:54 · 24953 阅读 · 55 评论 -
GitHub上值得Star的计算机视觉项目
计算机视觉:CVPR/ICCV最新论文解读系列 ,人工智能,计算机视觉,大模型,AI,本文介绍了 GitHub 上多个值得关注的计算机视觉项目。涵盖 OpenCV、YOLO 系列等,涉及目标检测、图像分割等领域。这些项目提供丰富工具与资源,有基础库、高效检测模型、集成工具包等,还含代码示例,对初学者和开发者均具高参考与实用价值,可助力学习及系统构建。原创 2025-07-27 22:06:53 · 24975 阅读 · 56 评论 -
跨模态检索:用文本搜索图像的技术实现
红外图像处理:夜视与热成像技术解析 ,人工智能,计算机视觉,大模型,AI,在大数据时代,信息的呈现形式日益多样化,图像、文本、音频、视频等不同模态的数据大量涌现。跨模态检索作为一项重要的技术,旨在打破不同模态数据之间的壁垒,实现从一种模态数据检索另一种模态数据的功能。其中,用文本搜索图像是跨模态检索领域中极具应用价值和研究热度的方向。它在电子商务、数字图书馆、多媒体信息检索等众多领域有着广泛的应用场景。原创 2025-07-25 09:40:59 · 8563 阅读 · 41 评论 -
红外图像处理:夜视与热成像技术解析
红外图像处理:夜视与热成像技术解析 ,人工智能,计算机视觉,大模型,AI,红外图像处理技术是夜视与热成像系统的核心,在军事、安防、工业检测、医疗诊断等多个领域发挥着不可替代的作用。本文深入剖析红外成像的基本原理,系统阐述传统红外图像处理方法和基于深度学习的前沿技术,并结合丰富的代码示例展示具体实现过程,同时探讨红外图像处理在各场景中的应用、面临的挑战及未来发展方向,旨在为相关领域研究人员和从业者提供全面且深入的技术参考。原创 2025-07-25 09:40:36 · 8602 阅读 · 33 评论 -
水下视觉挑战:模糊图像增强与目标识别
水下视觉挑战:模糊图像增强与目标识别 ,人工智能,计算机视觉,大模型,AI,水下视觉技术在海洋科学研究、资源勘探、海洋工程、军事侦察、生态保护等领域具有广泛应用。然而,水下环境的复杂性给视觉系统带来了诸多挑战。水体对光的吸收和散射作用导致图像对比度降低、颜色失真,悬浮颗粒进一步加剧了图像模糊,这些因素严重影响了目标识别的准确性。本文将深入探讨水下视觉中的关键问题 —— 模糊图像增强与目标识别,详细介绍相关理论、方法及实践案例。原创 2025-07-23 10:12:58 · 27999 阅读 · 15 评论 -
计算机视觉:AI生成内容(AIGC)对视觉领域的冲击
计算机视觉:AI生成内容(AIGC)对视觉领域的冲击 人工智能,计算机视觉,大模型,AI,在信息技术日新月异的当下,计算机视觉作为人工智能领域的关键分支,已经深度融入了我们生活与工作的各个层面。从安防监控系统里精准的人脸识别,助力维护公共安全;到工业生产线上高效的产品质量检测,保障产品品质;再到医疗影像分析中为疾病诊断提供有力支持,计算机视觉技术凭借其对视觉信息的强大处理与理解能力,不断推动着各行业的发展与变革。原创 2025-07-22 09:42:18 · 31211 阅读 · 37 评论 -
卫星遥感影像处理:地物分类与变化检测
卫星遥感影像处理:地物分类与变化检测 ,人工智能,计算机视觉,大模型,AI,卫星遥感技术通过搭载在卫星上的传感器获取地球表面的电磁波信息,为地物分类与变化检测提供了宏观、动态的观测数据。随着高分辨率遥感卫星(如高分系列、哨兵系列)的发展,遥感影像的空间分辨率、光谱分辨率和时间分辨率不断提升,为精准地物识别和动态变化监测奠定了基础。地物分类旨在将遥感影像中的像元按地表覆盖类型(如植被、水体、建筑、农田等)进行分类,而变化检测则通过对比不同时期的影像,识别地表覆盖的变化区域(如城市扩张、森林砍伐、土地退化等)原创 2025-07-22 09:41:59 · 30742 阅读 · 32 评论 -
显微镜图像分析:细胞分割与计数自动化
显微镜图像分析:细胞分割与计数自动化 ,人工智能,计算机视觉,大模型,AI,在生命科学和医学研究领域,显微镜图像分析是获取细胞信息的重要手段。细胞作为生命活动的基本单位,其形态、数量和分布等信息,对于疾病诊断、药物研发、细胞生物学研究等都有着至关重要的意义。传统的人工细胞分割与计数不仅耗时耗力,还容易因主观因素产生误差。随着计算机技术的飞速发展,细胞分割与计数自动化成为了提高研究效率和准确性的必然趋势。原创 2025-07-21 08:52:59 · 35720 阅读 · 35 评论 -
天文图像处理:星系分类与天体定位
天文图像处理:星系分类与天体定位 ,人工智能,计算机视觉,大模型,AI,脑机接口(Brain - Computer Interface,BCI)作为一种革命性的技术,在浩瀚的宇宙中,星系如同璀璨的宝石,隐藏着无数关于宇宙起源、演化和结构的奥秘。天体定位则是探索宇宙的基石,帮助我们确定天体在星空中的位置,进而研究其物理性质和运动规律。天文图像处理作为天文学研究的重要手段,通过对望远镜拍摄的原始图像进行处理、分析,能够揭示肉眼无法直接观测到的细节和特征,为星系分类和天体定位提供准确的数据支持。原创 2025-07-17 11:47:08 · 47956 阅读 · 48 评论 -
脑机接口中的视觉信号解码:原理、技术与应用
脑机接口中的视觉信号解码:原理、技术与应用 ,人工智能,计算机视觉,大模型,AI,脑机接口(Brain - Computer Interface,BCI)作为一种革命性的技术,致力于搭建人脑与外部设备之间的直接通信桥梁,绕开传统的神经肌肉输出通路。其核心目标是解读大脑活动产生的信号,从而实现对外部设备的精准控制或信息交互。在众多脑机接口研究方向中,视觉信号解码因其独特的优势和广泛的应用前景,吸引了大量科研人员的关注。原创 2025-07-16 09:41:27 · 55708 阅读 · 18 评论 -
强化学习在视觉导航中的应用
强化学习在视觉导航中的应用 ,人工智能,计算机视觉,大模型,AI,强化学习(Reinforcement Learning, RL)是一种通过智能体(Agent)与环境进行交互,以最大化累积奖励为目标的机器学习范式。它不依赖于预定义的规则或大量标注数据,而是让智能体在试错过程中学习最优策略。计算机视觉(Computer Vision)则赋予智能体 “观察” 环境的能力,使其能够从图像或视频中提取有用信息。原创 2025-07-11 08:51:29 · 76797 阅读 · 24 评论 -
计算机视觉与自然语言处理的融合:VQA 技术详解
计算机视觉与自然语言处理的融合:VQA 技术详解 ,人工智能,计算机视觉,大模型,AI,在人工智能蓬勃发展的当下,计算机视觉(Computer Vision, CV)和自然语言处理(Natural Language Processing, NLP)作为其两大重要领域,各自取得了令人瞩目的成果。计算机视觉致力于让计算机理解和解释图像、视频等视觉信息,实现目标检测、图像分类、语义分割等任务;自然语言处理则聚焦于使计算机能够理解、生成和处理人类语言,涵盖机器翻译、文本摘要、情感分析等应用。原创 2025-07-11 08:14:59 · 85878 阅读 · 53 评论 -
机器人视觉:SLAM与物体抓取技术结合
机器人视觉:SLAM与物体抓取技术结合 ,人工智能,计算机视觉,大模型,AI,机器人视觉作为人工智能的重要分支,赋予机器人感知和理解环境的能力。同步定位与地图构建 (SLAM) 技术使机器人能够在未知环境中创建地图并确定自身位置,而物体抓取技术则让机器人实现对目标物体的精准操作。这两项技术的结合,使机器人能够自主完成复杂任务,如家庭服务、工业自动化、物流仓储等。本文将深入探讨 SLAM 与物体抓取技术的融合,分析其技术原理、算法实现及应用场景。原创 2025-07-07 08:15:33 · 93049 阅读 · 45 评论 -
教育场景应用:手写公式识别与自动批改
教育场景应用:手写公式识别与自动批改 ,人工智能,计算机视觉,大模型,AI,在教育领域,数学、物理、化学等学科的学习和考核中,公式的书写与运算占据重要地位。传统的手写公式批改依赖教师人工完成,不仅耗费大量时间和精力,还容易受到主观因素影响,存在效率低、误差大等问题。随着人工智能和计算机视觉技术的发展,手写公式识别与自动批改技术应运而生,为教育场景带来了新的解决方案。该技术能够将学生手写的公式转换为计算机可识别的数字格式,并自动进行批改评分,极大地提高了教学效率,减轻了教师负担,同时也为学生提供了及时的反馈,原创 2025-07-04 08:34:56 · 98143 阅读 · 70 评论 -
文化遗产保护:三维扫描与图像修复技术
文化遗产保护:三维扫描与图像修复技术 ,人工智能,计算机视觉,大模型,AI,文化遗产是人类历史和文化的瑰宝,承载着过去的记忆、技艺与智慧。然而,自然侵蚀、人为破坏、时间流逝等因素,正不断威胁着文化遗产的完整性与存续。随着科技的飞速发展,三维扫描与图像修复技术逐渐成为文化遗产保护领域的重要手段。三维扫描技术能够以高精度获取文化遗产的三维数据,实现数字化存档与虚拟展示;图像修复技术则可对受损的文化遗产图像进行修复,重现其原本风貌。这两项技术的应用,为文化遗产保护开辟了新的路径,极大地提升了保护工作的效率与质量。原创 2025-07-04 08:34:33 · 92620 阅读 · 34 评论 -
计算机视觉安防监控升级:人脸识别与行为异常检测
计算机视觉安防监控升级:人脸识别与行为异常检测 ,人工智能,计算机视觉,大模型,AI,本文将深入探讨人脸识别与行为异常检测技术在安防监控中的应用,包括技术原理、算法实现、应用场景以及面临的挑战与解决方案。通过实际案例和代码示例,帮助读者更好地理解和掌握这些技术,为推动安防监控系统的智能化升级提供参考。原创 2025-07-04 08:34:15 · 91605 阅读 · 16 评论 -
计算机视觉体育分析:动作识别与运动员姿态估计
计算机视觉体育分析:动作识别与运动员姿态估计 ,人工智能,计算机视觉,大模型,AI,本文将深入探讨计算机视觉在体育分析中的应用,详细介绍动作识别与运动员姿态估计的技术原理、算法模型、实际应用案例以及面临的挑战与未来发展趋势。通过丰富的代码示例和概念解释,帮助读者全面理解这一前沿技术领域。原创 2025-07-02 12:39:37 · 99253 阅读 · 63 评论 -
医疗影像诊断:AI辅助癌症早期筛查
医疗影像诊断:AI辅助癌症早期筛查 ,人工智能,计算机视觉,大模型,AI,随着人工智能(Artificial Intelligence,AI)技术的飞速发展,特别是深度学习(Deep Learning)算法的突破,AI 在医疗影像诊断领域展现出巨大的潜力。AI 辅助癌症早期筛查能够通过对大量医疗影像数据的学习,快速、准确地识别影像中的癌症特征,为医生提供辅助诊断建议,极大地提高癌症早期筛查的效率和准确性。本文将深入探讨 AI 辅助癌症早期筛查在医疗影像诊断中的应用。原创 2025-07-02 09:29:01 · 11108 阅读 · 38 评论 -
制造业质检:基于深度学习的缺陷检测系统
制造业质检:基于深度学习的缺陷检测系统 ,人工智能,计算机视觉,大模型,AI,将深度学习应用于制造业质检,不仅能够显著提高检测效率和准确性,降低人工成本和误检率,还能为企业提供实时的质量监控和数据分析,帮助企业及时发现生产过程中的问题,优化生产工艺,提升产品质量和市场竞争力,推动制造业向智能化、数字化转型。原创 2025-06-30 08:48:28 · 35356 阅读 · 37 评论 -
智慧城市中的CV:交通流量监控与行人检测
智慧城市中的CV:交通流量监控与行人检测 ,人工智能,计算机视觉,大模型,AI,计算机视觉作为人工智能的重要分支,通过分析和理解图像或视频数据,为智慧城市提供了强大的感知能力。在交通管理领域,计算机视觉技术可实现交通流量监控、行人检测、违章行为识别等功能,助力构建高效、安全、绿色的城市交通系统。原创 2025-06-27 09:32:49 · 54484 阅读 · 73 评论 -
农业4.0:无人机与视觉技术助力作物监测
零售业中的计算机视觉:无人结算与货架分析 ,人工智能,计算机视觉,大模型,AI,传统作物监测依赖人工巡检,存在效率低、成本高、覆盖范围有限等问题。同时,人工判断易受主观因素影响,难以及时发现早期病虫害或营养缺乏等问题。据联合国粮农组织统计,全球每年因病虫害导致的作物损失约占总产量的 20%-40%。原创 2025-06-27 09:03:20 · 48472 阅读 · 31 评论 -
零售业中的计算机视觉:无人结算与货架分析
零售业中的计算机视觉:无人结算与货架分析 ,人工智能,计算机视觉,大模型,AI,计算机视觉作为人工智能的核心分支,通过图像和视频分析理解视觉场景,为零售行业提供了智能化解决方案。在无人结算场景中,计算机视觉技术可自动识别商品、计价并完成支付,彻底颠覆传统收银模式;在货架分析方面,能够实时监控商品陈列状态、库存水平,辅助商家优化货架布局和补货策略。原创 2025-06-25 09:59:21 · 57110 阅读 · 23 评论 -
计算机视觉模型可解释性:Grad-CAM与Attention可视化
计算机视觉模型可解释性:Grad-CAM与Attention可视化 ,人工智能,计算机视觉,大模型,AI,计算机视觉模型的可解释性技术主要分为全局解释和局部解释。全局解释旨在理解模型在整个数据集上的决策逻辑,例如分析哪些特征对模型分类结果影响最大;局部解释则聚焦于单个样本,探究模型针对该样本做出决策的依据。Grad-CAM 和 Attention 可视化均属于局部解释技术,它们通过可视化的方式,直观展示模型在处理单张图像时关注的重点区域。原创 2025-06-25 09:58:37 · 57499 阅读 · 28 评论 -
计算机视觉分布式训练实战:多GPU加速视觉模型训练
计算机视觉分布式训练实战:多GPU加速视觉模型训练 ,人工智能,计算机视觉,大模型,AI,在视觉领域,像 ResNet、ViT 等模型参数量庞大,数据集如 ImageNet 动辄包含百万级图像数据。单 GPU 的显存容量和计算能力有限,处理大规模数据和复杂模型时,训练速度缓慢,甚至因显存不足导致训练中断。分布式训练利用多台机器(多节点)或单台机器的多个 GPU(多卡)并行计算,将计算任务和数据进行拆分,显著提升训练效率,缩短模型训练时间。原创 2025-06-23 09:03:04 · 44017 阅读 · 30 评论 -
人工智能MLOps for CV:如何管理视觉模型的生命周期?
人工智能MLOps for CV:如何管理视觉模型的生命周期? ,人工智能,计算机视觉,大模型,AI,MLOps 旨在将机器学习开发(ML)与运维(Ops)相结合,通过自动化、标准化的流程,实现视觉模型从数据处理、模型训练、评估验证、部署上线到持续监控与优化的全生命周期管理。一个完整的视觉模型生命周期通常包括数据准备、模型开发、模型训练、模型评估、模型部署、模型监控与迭代等阶段。每个阶段紧密相连,任何一个环节出现问题,都会影响整个模型的性能和应用效果。通过 MLOps,能够确保各阶段高效协同,提高模型开发。原创 2025-06-21 11:17:46 · 72854 阅读 · 14 评论 -
LabelImg与CVAT:视觉数据标注工具全解析
LabelImg与CVAT:视觉数据标注工具全解析 ,人工智能,计算机视觉,大模型,AI,随着计算机视觉应用场景的不断拓展,对标注数据的需求日益增长,这也促使各类标注工具应运而生。其中,LabelImg 和 CVAT(Computer Vision Annotation Tool)凭借各自的优势,成为众多开发者和研究人员的常用工具。本文将对这两款工具进行全面解析,帮助读者深入了解它们的功能特性、使用方法以及适用场景。原创 2025-06-21 11:16:37 · 72124 阅读 · 10 评论 -
计算机视觉数据增强技巧:Albumentations库实战指南
计算机视觉数据增强技巧:Albumentations库实战指南 ,人工智能,计算机视觉,大模型,AI,在计算机视觉任务中,数据是模型训练的基石。然而,实际场景中往往难以获取足够数量的标注数据。数据增强技术应运而生,它通过对原始数据进行各种变换,如翻转、旋转、缩放等,扩充数据集规模,增加数据的多样性,从而有效提升模型的泛化能力,减少过拟合现象。原创 2025-06-21 11:15:31 · 72131 阅读 · 62 评论 -
Web端计算机视觉:使用TensorFlow.js实现浏览器内推理
Web端计算机视觉:使用TensorFlow.js实现浏览器内推理 ,人工智能,计算机视觉,大模型,AI,在人工智能快速发展的时代,计算机视觉作为人工智能领域的重要分支,已经广泛应用于图像识别、目标检测、视频分析等众多场景。随着 Web 技术的不断进步,将计算机视觉能力引入 Web 端,实现浏览器内的实时推理,成为了一个极具吸引力的发展方向。这不仅可以为用户带来更加流畅、无需额外安装的交互体验,还能拓展计算机视觉应用的边界。原创 2025-06-20 09:48:54 · 87059 阅读 · 24 评论 -
边缘计算视觉:树莓派上的实时目标检测
边缘计算视觉:树莓派上的实时目标检测 ,人工智能,计算机视觉,大模型,AI,随着物联网(IoT)和人工智能技术的飞速发展,边缘计算逐渐成为热门领域。边缘计算将数据处理从云端下沉到靠近数据源的边缘设备,减少数据传输延迟和带宽消耗,同时提升数据隐私和安全性。树莓派作为一款低成本、低功耗且功能强大的微型计算机,成为边缘计算视觉应用的理想平台。在树莓派上实现实时目标检测,能够在工业监控、智能家居、智能安防等场景中发挥重要作用,例如实时监测工厂生产线上的产品缺陷、识别家庭中的异常行为、检测监控区域内的可疑人员等。原创 2025-06-17 13:13:56 · 93654 阅读 · 8 评论 -
模型部署指南:ONNX、TensorRT与OpenVINO优化
模型部署指南:ONNX、TensorRT与OpenVINO优化 ,人工智能,计算机视觉,大模型,AI,在深度学习领域,模型训练与模型部署是两个关键环节。训练出高性能的模型固然重要,但只有将模型成功部署到实际应用中,才能真正发挥其价值。然而,深度学习模型往往结构复杂、计算量大,直接部署可能面临运行效率低、资源占用高、硬件适配难等问题。为解决这些难题,ONNX(Open Neural Network Exchange)、TensorRT 和 OpenVINO 等工具应运而生,它们从不同角度对模型进行优化和加速。原创 2025-06-17 13:13:30 · 93863 阅读 · 4 评论 -
TensorFlow 2.0在CV中的应用:高效Pipeline设计
TensorFlow 2.0在CV中的应用:高效Pipeline设计 ,人工智能,计算机视觉,大模型,AI,在计算机视觉(Computer Vision,CV)领域,随着深度学习技术的不断发展,对高效、灵活的开发框架需求日益增长。TensorFlow 2.0 以其简洁的 API 设计、强大的自动微分功能和良好的跨平台支持,成为 CV 任务开发的重要工具。一个高效的 TensorFlow 2.0 CV Pipeline(流水线)能够将数据处理、模型构建、训练优化以及部署等环节有机整合,提升开发效率与模型性能。原创 2025-06-16 09:22:36 · 90070 阅读 · 17 评论 -
计算机视觉生物启发视觉算法:如何模拟人眼与大脑?
计算机视觉生物启发视觉算法:如何模拟人眼与大脑? ,人工智能,计算机视觉,大模型,AI,计算机视觉旨在赋予机器感知和理解视觉世界的能力,而人类视觉系统作为自然界最精密的视觉处理系统,具备强大的图像识别、场景理解与目标追踪能力。在日常生活中,人类能瞬间识别复杂场景中的物体,适应不同光照条件,甚至仅凭模糊线索完成视觉任务。生物启发视觉算法正是试图从人眼与大脑的生理结构和信息处理机制中获取灵感,将生物学原理融入计算机视觉算法设计,为解决传统计算机视觉技术面临的难题,如复杂环境下的目标识别、低功耗视觉处理等。原创 2025-06-13 09:41:08 · 10864 阅读 · 44 评论 -
计算机视觉联邦学习与隐私保护:视觉模型的新训练范式
计算机视觉联邦学习与隐私保护:视觉模型的新训练范式 ,人工智能,计算机视觉,大模型,AI,在人工智能领域,计算机视觉技术凭借强大的图像识别、目标检测、语义分割等能力,广泛应用于安防监控、自动驾驶、医疗诊断、智能家居等众多领域。然而,这些应用的背后依赖于海量的图像数据,而这些数据往往包含用户的敏感信息,如人脸、医疗影像等,数据隐私保护成为关键问题。传统的集中式机器学习训练模式,需要将分散在各个节点的数据集中到中心服务器进行训练,这种方式不仅面临数据传输成本高、效率低的问题,还存在严重的数据泄露风险。原创 2025-06-11 09:31:48 · 20181 阅读 · 44 评论 -
计算机视觉:Transformer的轻量化与加速策略
计算机视觉:Transformer的轻量化与加速策略 ,人工智能,计算机视觉,大模型,AI,在计算机视觉领域,Transformer 自被引入后,凭借其强大的特征建模能力,在图像分类、目标检测、语义分割等众多任务中取得了优异的成绩。然而,原始的 Transformer 模型结构复杂,参数量巨大,计算资源消耗高,导致模型训练和推理速度慢,难以部署在资源受限的设备(如移动设备、嵌入式设备)上。因此,研究 Transformer 的轻量化与加速策略成为推动其广泛应用的关键。本文将深入探讨各种轻量化与加速技术。原创 2025-06-11 09:31:33 · 21350 阅读 · 63 评论