使用Python计算皮尔逊相关系数,并用热力图展示

学习笔记学习计算皮尔相关逊系数,并用热力图展示出来。

       由于是自我练习的笔记,所以这里先通过Pandas随机生成一部分时序数据,然后再调用corr()函数来计算皮尔逊相关系数,并把计算结果先展示输出出来,最后通过热力图的方式把计算结果展现出来。

   下面是开发的具体过程:

1、首先导入需要的算法包

import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

2、生成数据(由于是练习,所以这里的数据是随机生成的时序数据,其中索引为时间)

dates = pd.date_range('20220101', periods=15)#生成连续15天的时间序列
df = pd.DataFrame(np.random.randn(15,4), index=dates, columns=list('ABCD'))
print(df)

输出:

3、通过corr()函数来计算df数据中的两两元素的皮尔相关逊系数

a=df.corr()
print('皮尔逊系数')
print(a)

计算结果如

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值