1.github下载源码https://github.com/ultralytics/yolov5/blob/master/README.zh-CN.md
2.conda安装虚拟环境conda create --name YOLOv5 python=3.8,虚拟环境名称YOLOv5,python版本3.8
3.将刚刚下载的YOLOv5源码复制到D:\science\anaconda\anacondaData\envs\YOLOv5目录下
4.从D:\science\anaconda\anacondaData\envs\YOLOv5目录下用activate YOLOv5命令进入虚拟环境
5.在虚拟环境下用pip install -r requirements.txt命令安装项目所需环境(后面加上-i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn梯子加快下载速度)
6.安装GPU版本的pytorch:conda install pytorch==1.10.0 torchvision==0.11.0 cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/用这个命令
7.推理:首先使用原来的摄像头推理python detect.py --weights yolov5s.pt --source 0(0代表摄像头)后面还可以 加以下:
img.jpg # image