Step1. 理解零知识证明算法之Zk-stark

本文对比分析了零知识证明算法中的zk-stark和zk-snark,探讨了它们的异同点。zk-stark在可扩展性和透明性上优于zk-snark,验证时间与原始计算呈对数关系,而zk-snark则在简洁性上占优。两者的算法思想和转换过程也有所不同,zk-stark利用多项式插值,而zk-snark涉及算术环路和QAP方法。文章最后简要介绍了算法的主要步骤,并预告了后续将深入介绍zk-stark的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Concept:zk-stark vs zk-snark

谈到ZKP算法,大伙可能听过一些,比如zk-snark,zk-stark, bulletproof, aztec, plonk等等。今天,咱就给大伙聊聊这一对“表面兄弟”,zk-stark和zk-snark算法的异同之处。
不如,先让我们从名称说起? 毕竟,两个看起来都很厉害的亚子_
如下图所示,我们将名称zk-stark 和 zk-snark根据功能特点分别分成四个部分,然后逐个比较分析。
在这里插入图片描述

Zk-stark => zk - s t ark

zk:零知识,表明隐私的输入将会被隐藏,除了证明者,其他任何人不会看见;
s:可扩展的,和Replay Computation的验证耗时相比,zk-stark的证明和验证耗时分别与之呈拟线性关系和对数关系;
t:透明的,zk-stark算法没有CRS setup by Trusted party;
arg:知识论证,只有知道private input的prover,才能生成有效的proof;

Zk-snark => zk - s n ark

zk:零知识,表明隐私的输入将会被隐藏,除了证明者,其他任何人不会看见;
s:简洁的,指的是生成的proof足够小和验证时间足够短;
n:非交互式的,Prover生成证明的过程中和verifier没有交互;
arg:知识论证,只有知道private input的prover,才能生成有效的proof;

Compare

    <
### 零知识证明算法的工作原理 零知识证明(Zero-Knowledge Proof, ZKP)是一种密码学技术,允许一方(称为证明者)向另一方(称为验证者)证明某个陈述的真实性,而无需透露任何关于该陈述的具体信息。这种技术的核心在于能够在不泄露敏感数据的情况下完成身份验证或其他形式的信任建立。 #### 基本概念 零知识证明的关键属性包括完备性、可靠性和零知识性: - **完备性**:如果声明是真的,则诚实的验证者会接受诚实的证明者的证明[^1]。 - **可靠性**:如果声明是假的,则即使是一个欺骗性的证明者也无法说服诚实的验证者相信它是真的。 - **零知识性**:除了声明本身之外,验证者不会获得其他额外的信息。 #### 实现基础 ZKP 的实现依赖于多种复杂的密码学工具和技术,其中包括但不限于以下几类: - **双线性对**:用于构建高效的多项式承诺方案和优化配对操作[^3]。 - **同态加密**:支持在加密状态下进行计算,从而保护隐私数据。 - **离散对数问题**:提供数学上的难解性保障安全性。 #### 不同类型的零知识证明算法及其特点 以下是几种常见的零知识证明算法以及它们的主要特征: ##### zk-SNARK (Succinct Non-Interactive Arguments of Knowledge) - 特点:简洁且非交互性强,适合区块链应用中的高效交易验证。 - 缺点:需要可信设置阶段,在某些场景下可能引入安全风险[^2]。 ##### zk-STARK (Scalable Transparent Argument of Knowledge) - 特点:透明化设计不需要初始信任假设,抗量子攻击能力强。 - 贸易off:相较于zk-SNARK体积较大,效率较低。 ##### Bulletproofs - 特点:无须可信设置过程,适用于范围证明等问题。 - 局限:单个证明尺寸相对较大,性能较慢。 ##### Sonic 和 PLONK 两者均属于通用型构造方法,其中PLONK尤为突出因为它的灵活性好,可以适应不同硬件环境下的部署需求,并且具有较高的运行速度。具体来说, - 在PLONK中,验证主要围绕着两个多项式承诺展开并通过一次双线性配对完成最终确认步骤; - 此外为了简化运算流程还会预先处理部分固定值比如Wz(x), Wzw(x),以此减少实时计算负担提升整体表现效果。 ### 总结 综上所述,零知识证明是一项强大而又灵活的技术框架,它不仅能够满足现代信息安全领域日益增长的需求同时也推动了许多新兴行业的发展如去中心化金融(DeFi)等领域内的创新实践不断涌现出来。 ```python # 示例代码展示如何简单模拟一个基于椭圆曲线的加法操作 from ecdsa import SigningKey, SECP256k1 def generate_keys(): sk = SigningKey.generate(curve=SECP256k1) vk = sk.verifying_key return sk,vk sk, vk = generate_keys() print(f"Private Key: {sk.to_string().hex()}") print(f"Public Key: {vk.to_string().hex()}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值