时域分析
一阶系统
一阶电路的时域分析是研究仅含一个储能元件的线性电路在激励作用下,响应随时间变化规律的方法。其核心是通过建立一阶微分方程并求解,结合初始条件得到响应表达式。
其微分方程往往是如下形式:
其冲激响应为:
图像为:
时间常数
时间常数(τ)是描述一阶系统动态系统响应速度的关键参数,控制着一阶系统的快慢。RC电路的时间常数为RC,RL电路的时间常数为L/R。当t=τ时,信号衰减到t=0时的1/e倍。
注意:一阶系统不会发生振荡。
自由响应
一阶线性非齐次微分方程的通解由齐次解(自由响应)和特解(稳态响应)组成
1. 齐次解(自由响应)
齐次解代表系统的自由响应,完全由系统拓扑决定,决定着系统的动态特性,和输入无关。
2. 特解(稳态响应)
当 t→∞ 时,电路进入稳态,储能元件的动态特性消失(电容电压恒定,电感电流恒定)。对于直流激励,特解为稳态值 f(∞):
三要素法:快速求解全响应
对于一阶线性电路的直流激励,全响应可表示为三要素的函数,极大简化计算:
其中:
f(0+):初始值(t=0+时刻的响应值,由换路定则确定);
f(∞):稳态值(t→∞ 时的响应值,由电路稳态特性确定);
τ:时间常数(反映过渡过程快慢,τ=RC 或 τ=L/R)。
二阶系统
常见呈现振荡性质的系统几乎都是二阶系统,他们的动态特性可以用二阶微分方程描述。电路系统中常见的振铃就是LC振荡。
二阶系统的三种情况
α{α }α:指数阻尼系数,表示自由响应衰减的速度,类似一阶系统的时间常数;
ω0{ω_0}ω0:无阻尼谐振频率,等于1/LC1/\sqrt{LC}1/LC,反映系统的固有振荡频率;
ωd{ω_d}ωd:本征振荡频率,欠阻尼时为实数,等于ω02−α2\sqrt{{ω_0}^2-{α}^2}ω02−α2;方程的两个根还可以表示为:
ζ{ζ }ζ: 阻尼系数,等于=α/ω0={α }/{ω_0}=α/ω0,反映系统阻尼的强弱,决定响应的振荡特性;ζ>1{ζ }>1ζ>1过阻尼,ζ=1ζ =1ζ=1临界阻尼,0<ζ<10< ζ <10<ζ<1欠阻尼;
二阶系统的求解过程
Q值
α{α }α、ωd{ω_d}ωd和ω0{ω_0}ω0的三角关系
Q值定义:
RLC串联电路的Q值为:
Q值用来描述衰减程度:
频率响应
由于电路中存在电抗元件,他们的阻抗会随着输入信号的频率变化,电路的工作状态跟随频率变化的现象称为电路的频率响应。通常采用网络函数来研究电路的频率响应
截止频率 ωc{ω_c}ωc:幅度降至0.707时对应的频率
波特图
幅频特性
增益表示为:
斜率为20dB/dec:表示频率每变化10倍,频率就改变20dB
相频特性
低通电路
RC低通电路
网络函数:
幅度和相位:
计算截止频率:
RL低通电路
网络函数:
幅度和相位:
计算截止频率:
高通电路
RC高通电路
网络函数:
幅度和相位:
计算截止频率:
RL高通电路
网络函数:
幅度和相位:
计算截止频率:
谐振
谐振是电路中容抗和感抗相等的一种状态,此时电路呈现纯电阻的性质,阻抗最大或者最小,在储能元件中产生过电流或过电压,输入电压和电流同相。
RLC串联谐振
输入阻抗为:
谐振频率:
通频带B:
假设功率消耗为峰值一般的频率点为半功率点
求解得到:
上式可以得到:
即谐振频率为半功率的几何平均值,由于频率响应不是对称的,ω1{ω_1}ω1和 ω2{ω_2}ω2也不是关于 ω0{ω_0}ω0对称的。
定义ω1{ω_1}ω1和 ω2{ω_2}ω2之间的宽度为带宽:
明显可以看出B=2*α{α }α
Q值:
可以得到品质因数Q{Q}Q和带宽B{B}B之间的关系:
谐振电路的品质因素是其谐振频率和带宽之比
Q值越高,电路的选频特性越好,频带也越窄,反之亦然。
高Q值电路:Q值大于等于10
在高Q值电路,可以认为半功率点关于谐振频率对称,近似的表示为
RLC并联谐振
输入导纳为:
谐振频率:
通频带和品质因数:
对于高Q值电路:
总结
零极点分析
通过拉普拉斯变换,可以求得一个网络的传递函数,通过传递函数可以求出系统的零极点
求零极点
深入理解零极点:极点由电路拓扑决定,零点由输入输出位置决定
零点:传递函数=0,分子输出网络为0
下图为求零点的方法:
极点:分母输入网络为0
下图为求极点的方法
零极点分析频率响应
傅里叶变换H(jω)是H(s)在s=jω处的取值,即H(jω)=H(s)|_{s=jω},所以
零极点对频率响应的影响
有了上面的结论,很容易推导出
零点对频率响应的影响
极点对频率响应的影响
总结:
左边:极点降,零点升
右边:极点相位反,零点相位反
注意:对于相位来说,左半边和右半边是不一样的,增加等于超前,减小等于滞后
转折频率
转折频率的定义是幅度下降为原来的0.707时所对应的频率
对于一阶系统,单个零极点肯定在实轴上,如下图:
当 ω{ω}ω沿着虚轴从0到无穷大变化时,当ω=1/RC{ω = 1/RC}ω=1/RC时,从点-1/RC指向j1/RC的向量的长度为2\sqrt{2}2倍的1/RC,因为极点在分母,所以幅度相比 ω=0{ω = 0}ω=0时(1/RC)下降了2\sqrt{2}2,故ω=1/RC{ω = 1/RC}ω=1/RC就是转择频率,数值上等于极点到远点的距离。所以对于一阶系统,转折频率就是零极点的值
对于二阶系统:二阶系统的转折频率通常指其无阻尼自然频率 ωn{ω_n}ωn,它是系统频率响应特性中幅频特性曲线斜率发生显著变化的特征频率点。根据自然频率,指数阻尼系数和本征振荡频率的关系
可以得出它等于共轭复数根到原点的距离。
所以,转折频率是由极点和零点到原点的距离决定的
有了转折频率和幅度、相位的变化方向,就可以画出一阶和二阶甚至高阶系统的波特图,得到系统的频率响应