Spark-JVM调优

对于JVM调优,首先应该明确,(major)full gc/minor gc,都会导致JVM的工作线程停止工作,即stop the world

1.降低cache操作的内存占比

(1) 静态内存管理机制

根据Spark静态内存管理机制,堆内存被划分为了两块,Storage和Execution。Storage主要用于缓存RDD数据和broadcast数据,Execution主要用于缓存在shuffle过程中产生的中间数据,Storage占系统内存的60%,Execution占系统内存的20%,并且两者完全独立。

在一般情况下,Storage的内存都提供给了cache操作,但是如果在某些情况下cache操作内存不是很紧张,而task的算子中创建的对象很多,Execution内存又相对较小,这回导致频繁的minor gc,甚至于频繁的full gc,进而导致Spark频繁的停止工作,性能影响会很大。

在Spark UI中可以查看每个stage的运行情况,包括每个task的运行时间、gc时间等等,如果发现gc太频繁,时间太长,就可以考虑调节Storage的内存占比,让task执行算子函数式,有更多的内存可以使用

Storage内存区域可以通过spark.storage.memoryFraction参数进行指定,默认为0.6,即60%,可以逐级向下递减,代码如下

val conf = new SparkConf().set("spark.storage.memoryFraction", "0.4")

(2)统一内存管理机制

根据Spark统一内存管理机制,堆内存被划分为了两块,Storage和Execution。Storage主要用于缓存数据,Execution主要用于缓存在shuffle过程中产生的中间数据,两者所组成的内存部分称为统一内存,Storage和Execution各占统一内存的50%,由于动态占用机制的实现,shuffle过程需要的内存过大时,会自动占用Storage的内存区域,因此无需手动进行调节

2.调节Executor堆外内存 

Executor的堆外内存主要用于程序的共享库、Perm Space、 线程Stack和一些Memory mapping等, 或者类C方式allocate object

有时,如果你的Spark作业处理的数据量非常大,达到几亿的数据量,此时运行Spark作业会时不时地报错,例如shuffle output file cannot find,executor lost,task lost,out of memory等,这可能是Executor的堆外内存不太够用,导致Executor在运行的过程中内存溢出。

stage的task在运行的时候,可能要从一些Executor中去拉取shuffle map output文件,但是Executor可能已经由于内存溢出挂掉了,其关联的BlockManager也没有了,这就可能会报出shuffle output file cannot find,executor lost,task lost,out of memory等错误,此时,就可以考虑调节一下Executor的堆外内存,也就可以避免报错,与此同时,堆外内存调节的比较大的时候,对于性能来讲,也会带来一定的提升。

默认情况下,Executor堆外内存上限大概为300多MB,在实际的生产环境下,对海量数据进行处理的时候,这里都会出现问题,导致Spark作业反复崩溃,无法运行,此时就会去调节这个参数,到至少1G,甚至于2G、4G。

Executor堆外内存的配置需要在spark-submit脚本里配置,代码如下

--conf spark.yarn.executor.memoryOverhead=2048

以上参数配置完成后,会避免掉某些JVM OOM的异常问题,同时,可以提升整体Spark作业的性能。

3.调节连接等待时长

在Spark作业运行过程中,Executor优先从自己本地关联的BlockManager中获取某份数据,如果本地BlockManager没有的话,会通过TransferService远程连接其他节点上Executor的BlockManager来获取数据。

如果task在运行过程中创建大量对象或者创建的对象较大,会占用大量的内存,这回导致频繁的垃圾回收,但是垃圾回收会导致工作现场全部停止,也就是说,垃圾回收一旦执行,Spark的Executor进程就会停止工作,无法提供相应,此时,由于没有响应,无法建立网络连接,会导致网络连接超时

在生产环境下,有时会遇到file not found、file lost这类错误,在这种情况下,很有可能是Executor的BlockManager在拉取数据的时候,无法建立连接,然后超过默认的连接等待时长60s后,宣告数据拉取失败,如果反复尝试都拉取不到数据,可能会导致Spark作业的崩溃。这种情况也可能会导致DAGScheduler反复提交几次stage,TaskScheduler返回提交几次task,大大延长了我们的Spark作业的运行时间。

此时,可以考虑调节连接的超时时长,连接等待时长需要在spark-submit脚本中进行设置,设置方式代码如下

--conf spark.core.connection.ack.wait.timeout=300

调节连接等待时长后,通常可以避免部分的XX文件拉取失败、XX文件lost等报错。

Spark SQL 的性能是大数据处理中非常关键的环节,尤其在面对大规模数据集时。以下是一些常见的 Spark SQL 性能方法和最佳实践: ### 3.1 数据分区与分布 合理的数据分区策略可以显著提升查询性能。建议将数据按照业务逻辑进行分区,并使用 `partitionBy` 对数据进行重新组织。此外,避免过多的小文件或过大的分区,保持每个分区的大小在合理的范围内(通常建议在 128MB 到 256MB 之间)[^2]。 ### 3.2 使用缓存机制 对于频繁访问的数据表或中间结果,可以使用 `cache()` 或 `persist()` 方法将其缓存到内存中,从而减少磁盘 I/O 操作。根据数据的重要性及使用频率选择不同的存储级别(如 `MEMORY_ONLY`, `MEMORY_AND_DISK` 等)[^2]。 ### 3.3 化 Join 操作 Join 是最常见的操作之一,但也容易成为性能瓶颈。可以通过以下方式化: - **选择合适的 Join 类型**:例如 Broadcast Join、Shuffle Hash Join 和 Sort Merge Join,每种类型适用于不同场景。 - **使用 Hint 指定 Join 策略**:通过 SQL 提示(Hint)强制指定特定的 Join 策略,例如 `/*+ BROADCAST(table) */` 来触发 Broadcast Join [^1]。 - **整 Shuffle 分区数**:通过参数 `spark.sql.shuffle.partitions` 控制 Shuffle 分区数量,以平衡任务并行度和资源消耗。 ### 3.4 合理配置资源 为 Spark 应用程序分配适当的计算资源至关重要。主要包括: - **Executor 数量与核心数**:增加 Executor 数量可以提高并行处理能力,但也要考虑集群的整体负载情况。 - **内存设置**:确保每个 Executor 获得足够的堆内存来处理数据,同时注意避免频繁的垃圾回收(GC)。如果发现 GC 频繁发生,则可能需要JVM 参数或减少对 JVM 对象的依赖 [^4]。 ### 3.5 使用 Structured APIs 尽量采用 DataFrame/Dataset API 替代 RDD,因为它们提供了更高级别的抽象并且能够更好地利用 Catalyst Optimizer 进行查询化。这些结构化接口还能有效降低内存压力 [^4]。 ### 3.6 监控与诊断 利用 Spark UI 中的 Stage 页面监控作业执行情况,识别慢任务或失败任务的原因。此外,还可以借助工具如 SparkOscope 实现跨栈监控,进一步挖掘潜在的化点 [^3]。 ### 3.7 查询计划分析 通过 `explain()` 方法查看物理执行计划,了解实际运行时的操作顺序以及是否应用了有效的化规则。这有助于发现不必要的 Shuffle 或者其他低效操作。 ### 3.8 文件格式选择 选择高效的文件格式也会影响整体性能。Parquet 和 ORC 等列式存储格式通常比 JSON 或 CSV 更适合大规模数据分析,因为它们支持投影下推(Projection Pushdown)和谓词下推(Predicate Pushdown),减少了读取的数据量 。 ### 3.9 动态分区裁剪(Dynamic Partition Pruning) 启用动态分区裁剪功能可以帮助过滤掉不必要的分区,特别是在大表连接小表的情况下效果明显。相关配置项包括 `spark.sql.optimizer.dynamicPartitionPruning.enabled` 和 `spark.sql.optimizer.dynamicPartitionPruning.useStats` [^1]。 ### 3.10 压缩与编码 适当开启压缩算法(如 Snappy, Gzip)可以在一定程度上减少磁盘空间占用并加快数据传输速度。另外,使用字典编码等技术也能提升某些类型的查询效率 。 以上就是关于 Spark SQL 性能的一些常用方法和最佳实践。实施这些策略时,请结合具体应用场景灵活运用,并持续跟踪其对系统性能的影响。 ```python # 示例代码 - 设置 Shuffle 分区数量 spark.conf.set("spark.sql.shuffle.partitions", "200") # 示例代码 - 缓存表 df.cache() # 示例代码 - 查看查询计划 df.explain() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值