C++&TensorRT | TensorRT模型编译流程

本文详细介绍了C++结合TensorRT的工作流程,包括定义网络、优化builder参数、生成engine并序列化,以实现模型的快速传输和推理。通过代码结构展示如何定义builder、config和network,以及如何处理输入、模型结构和输出信息,最终生成并序列化engine模型文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorrt的工作流程如下图:

  1. 首先定义网络

  2. 优化builder参数

  3. 通过builder生成engine,用于模型保存、推理等

  4. engine可以通过序列化和逆序列化转化模型数据类型(转化为二进制byte文件,加快传输速率)

  5. 再进一步推动模型由输入张量到输出张量的推理
    在这里插入图片描述
    代码结构:

  6. 定义 builder, config 和network,其中builder表示所创建的构建器,config表示创建的构建配置(指定TensorRT应该如何优化模型),network为创建的网络定义。

  7. 输入,模型结构和输出的基本信息(如下图所示)
    在这里插入图片描述

  8. 生成engine模型文件

  9. 序列化模型文件并存储

// tensorRT include
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ASKCOS

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值