1. 直方图均衡化
1.1 理论分析
定义讨论中的符号
P∈Rm×n,原图像矩阵S∈Rm×n,直方图均衡化之后的图像[0,L−1],像素点的取值范围p(r),原图像概率密度函数T(r),灰度转换函数round(x),四舍五入函数 \begin{aligned} &P \in R^{m \times n}, 原图像矩阵\\ &S \in R^{m \times n}, 直方图均衡化之后的图像\\ &[0, L - 1], 像素点的取值范围\\ &p(r), 原图像概率密度函数\\ &T(r), 灰度转换函数\\ &round(x), 四舍五入函数 \end{aligned} P∈Rm×n,原图像矩阵S∈Rm×n,直方图均衡化之后的图像[0,L−1],像素点的取值范围p(r),原图像概率密度函数T(r),灰度转换函数round(x),四舍五入函数
首先计算原图像的概率密度函数(PDF)
p(r)=1mn∑I(Pij=r),r=0,⋯ ,L−1 p(r) = \frac{1}{mn} \sum I(P_{ij} = r), r = 0, \cdots, L - 1 p(r)=mn1∑I(Pij=r),r=0,⋯,L−1
接下来计算灰度转换函数
T(r)=round((L−1)∑i=0rp(i)) T(r) = round((L - 1) \sum_{i = 0}^{r}p(i)) T(r)=ro