mysql的半同步复制

本文深入解析半同步复制机制,介于异步与全同步复制之间,通过等待至少一个从库确认接收事务,提高数据安全性。文章详细介绍了半同步复制的特点、配置步骤及测试方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介:

介于异步复制和全同步复制之间,主库在执行完客户端提交的事务后不是立刻返回给客户端,而是等待至少一个从库接收到并写到relay_log中才返回给客户端。相对于异步复制,半同步复制提高了数据的安全性,同时它也造成了一定程度的延迟,这个延迟最少是一个TCP/IP往返的时间。

在这里插入图片描述事物在主库执行完binlog后接受到从库的ACK,才会回复客户端。所以,相比而言,性能有所降低。

  • 半同步复制特点:

  • 确保事务提交后binlog至少传输到一个从库

  • 不保证从库应用完成这个事务的binlog

  • 网络异常或从库宕机,卡主库,直到超时或从库恢复

  • 优点
    MySQL默认的复制即是异步的,主库在执行完客户端提交的事务后会立即将结果返给给客户端,并不关心从库是否已经接收并处理,这样就会有一个问题,主如果crash掉了,此时主上已经提交的事务可能并没有传到从上,如果此时,强行将从提升为主,可能导致新主上的数据不完整。半同步复制就是为了解决数据丢失的问题。

配置:

官方文档:https://dev.mysql.com/doc/refman/5.7/en/replication-semisync-installation.html

注意:
实验要求实验前主从数据一致,如果不一致的话,解决反案。
主库:
grant all on . to ‘root’@’%’ identified by ‘Wsp+123ld’;
mysqldump --all-databases --single-transaction --triggers --routines --events --host=127.0.0.1 --port=3306 --user=root -p > wsp.sql
Enter password:
从库:
mysql -uroot -p < wsp.sql

  • 在主库安装服务插件,并且开启半同步复制
    安装插件:
    INSTALL PLUGIN rpl_semi_sync_master SONAME ‘semisync_master.so’;
    查看状态:
    mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
    FROM INFORMATION_SCHEMA.PLUGINS
    WHERE PLUGIN_NAME LIKE ‘%semi%’;
    打开插件:
    SET GLOBAL rpl_semi_sync_master_enabled =1;
    设置超时时间(半同步转异步复制):
    SET GLOBAL rpl_semi_sync_master_timeout = 10;

  • 在从库安装服务插件,并且开启半同步复制
    安装插件:
    INSTALL PLUGIN rpl_semi_sync_slave SONAME ‘semisync_slave.so’;
    打开插件:
    SET GLOBAL rpl_semi_sync_slave_enabled = 1;
    重启IO线程:
    如果没有重启,则默认还是异步复制,重启后,slave会在master上注册为半同步复制的slave角色
    STOP SLAVE IO_THREAD;
    START SLAVE IO_THREAD;

这些配置为了永久生效,需要写入配置文件
on master:
[mysqld]
rpl_semi_sync_master_enabled=1
rpl_semi_sync_master_timeout=1000 # 1 second
on slave:
[mysqld]
rpl_semi_sync_slave_enabled=1

  • 测试:’

  • 主库:

mysql>insert usertb values (‘user2’,‘789’);
Query OK, 1 row affected (0.06 sec)

mysql> SHOW VARIABLES LIKE ‘rpl_semi_sync%’;
±------------------------------------------±-----------+
| Variable_name | Value |
±------------------------------------------±-----------+
| rpl_semi_sync_master_enabled | ON |
| rpl_semi_sync_master_timeout | 10 |
| rpl_semi_sync_master_trace_level | 32 |
| rpl_semi_sync_master_wait_for_slave_count | 1 |
| rpl_semi_sync_master_wait_no_slave | ON |
| rpl_semi_sync_master_wait_point | AFTER_SYNC |
±------------------------------------------±-----------+
6 rows in set (0.00 sec)

mysql> SHOW STATUS LIKE ‘Rpl_semi_sync%’;
±-------------------------------------------±------+
| Variable_name | Value |
±-------------------------------------------±------+
| Rpl_semi_sync_master_clients | 1 |
| Rpl_semi_sync_master_net_avg_wait_time | 0 |
| Rpl_semi_sync_master_net_wait_time | 0 |
| Rpl_semi_sync_master_net_waits | 1 |
| Rpl_semi_sync_master_no_times | 0 |
| Rpl_semi_sync_master_no_tx | 0 |
| Rpl_semi_sync_master_status | ON |
| Rpl_semi_sync_master_timefunc_failures | 0 |
| Rpl_semi_sync_master_tx_avg_wait_time | 742 |
| Rpl_semi_sync_master_tx_wait_time | 742 |
| Rpl_semi_sync_master_tx_waits | 1 |
| Rpl_semi_sync_master_wait_pos_backtraverse | 0 |
| Rpl_semi_sync_master_wait_sessions | 0 |
| Rpl_semi_sync_master_yes_tx | 1 |
±-------------------------------------------±------+
14 rows in set (0.00 sec)

  • 从库查看
    在这里插入图片描述
内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价值流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想和方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验和应用,我们发现ICA在提取信号特征、降噪和信号分离等方面具有广泛的潜力和应用前景。
标题Spring框架在大型超市前后台系统中的应用研究AI更换标题第1章引言介绍研究背景、意义,分析国内外在该领域的研究现状,并概述论文的研究方法和创新点。1.1研究背景与意义阐述Spring框架在大型超市前后台系统中的应用背景及其实际意义。1.2国内外研究现状分析国内外关于Spring框架在大型超市前后台系统中的应用研究现状。1.3研究方法与创新点介绍论文的研究方法,并突出论文的创新之处。第2章Spring框架及相关技术概述对Spring框架进行简要介绍,包括其核心特性和相关技术。2.1Spring框架简介概述Spring框架的基本概念、主要特点和优势。2.2Spring框架的核心组件详细介绍Spring框架的核心组件,如IoC容器、AOP等。2.3与Spring框架相关的技术阐述与Spring框架紧密相关的技术,如Spring MVC、Spring Data等。第3章大型超市前后台系统需求分析对大型超市前后台系统的需求进行详细分析,为后续系统设计奠定基础。3.1前台系统需求分析分析前台系统的功能需求,如商品展示、购物车管理等。3.2后台系统需求分析分析后台系统的功能需求,如商品管理、订单处理等。3.3非功能性需求分析讨论系统的性能、安全性等非功能性需求。第4章基于Spring框架的大型超市前后台系统设计根据需求分析结果,设计基于Spring框架的大型超市前后台系统。4.1系统架构设计设计系统的整体架构,包括前后台系统的交互方式、数据流向等。4.2数据库设计设计系统的数据库结构,包括表结构、数据关系等。4.3界面设计设计前后台系统的用户界面,确保用户友好性和交互性。第5章系统实现与测试详细阐述系统的实现过程,并对系统进行测试以验证其功能和性能。5.1系统实现按照系统设计,实现前后台系统的各个功能模块。5.2系统测试对系统进行功能测试、性能测试等,确保系统满足需求并具有稳定性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值