-
树:n(n≥0)个结点的有限集。n=0时称为空树。在任意一棵非空树中:有且仅有一个特定的称为根的结点;当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每一个集合本身又是一棵树,并且称为根的子树。
-
相关概念
·度:结点拥有的子树数。
·层次:从根开始,根为第一层,根的孩子为第二层。
·深度:(结点)所在的层次数。根结点的深度为1。
·高度:所有结点中深度的最大值。(空树0)
·结点分类:叶结点(度数为0);内部结点;根结点。
·结点关系:祖先;后代;双亲;孩子;兄弟。
·森林:m(m ≥ 0)棵互不相交的树的集合。 -
二叉树:每个结点度数不超过2。
·有序二叉树:树中结点的各子树看成从左至右有次序,不能交换的二叉树。
·真二叉树:不含1度结点的二叉树。
·满二叉树:结点 n ,高度 h ,满足 n = 2^h - 1。(所有叶子都在同一层)
·斜树:结点都只有左子树或右子树。
·完全二叉树:具有n个结点的二又树按层序编号,如果编号为i(1 ≤ i ≤ n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同。
-
书的存储结构表示方法:双亲表示法、孩子表示法、孩子兄弟表示法。
·双亲表示法
数据域 | 指针域 |
---|---|
data | parent (firstchild / rightsib) |
·孩子表示法:需两种结点结构(孩子链表的孩子结点;表头数组的表头结点)
数据域 | 指针域 |
---|---|
child | next |
data | (parent) firstchild |
·孩子兄弟表示法
数据域 | 指针域 | 指针域 |
---|---|---|
data | firstchild | rightsib |
-
二叉树的性质
·第 i 层至多有2^(i - 1)个结点(i ≥1)。
·高度为h的二叉树至多有2^h - 1 个结点(h ≥ 0)。
·若叶子结点数为 n_0,度数为2的结点数为 n_2,则 n_0 = n_2 + 1。
·n个结点的完全二叉树,高度为 ⌊log2n⌋+1⌊ log_2 n ⌋ + 1⌊log2n⌋+1。若按层序编号,对任一结点 i 都有
①若 i = 1,则结点 i 是二叉树的根,无双亲;如果 i > 1,则其双亲是结点⌊ i / 2 ⌋。
②若 2i > n,则结点 i 无左孩子(结点 i 为叶子结点);否则其左孩子是结点 2i 。
③若 2i + 1 > n,则结点 i 无右孩子;否则其右孩子是结点 2i + 1。
(顺序存储结构一般只适用于完全二叉树) -
二叉链表
指针域 | 数据域 | 指针域 |
---|---|---|
lchild | data | rchild |
-
二叉树的遍历
·前序遍历:若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。(中-左-右)
·中序遍历:若树为空,则空操作返回,否则从根结点开始(注意并不是先访问根结点),中序遍历根结点的左子树,然后是访问根结点,最后中序遍历右子树。(左-中-右)
·后序遍历:若树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点。(左-右-中)
·层序遍历:若树为空,则空操作返回,否则从树的根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。
-
扩展二叉树:将二叉树每个结点的空指针引出一个虚结点,其值为一特定值。
-
线索二叉树:指向前驱和后继的指针称为线索,加上线索的二叉链表称为线索链表,相应的二叉树就称为线索二叉树。对二叉树以某种次序遍历使其变为线索二又树的过程称做是线素化。
指针域 | 数据域 | 指针域 | ||
---|---|---|---|---|
lchild | ltag | data | rtag | rchild |
·ltag为0时指向该结点的左孩子,为1时指向该结点的前驱;tag为0时指向该结点的右孩子,为1时指向该结点的后继。
-
树、 森林、二叉树间的转换
· 树转换为二叉树
①加线:在所有兄弟结点之间加一条连线。
②去线:只保留结点与长子的连线,删除与其他孩子的连线。
③层次调整:以根结点为轴心,将树顺时针旋转45°。
·森林转换为二叉树
①把每棵树转换成二叉树。
②第一棵二叉树不动,从第二棵二叉树开始,依次将后一棵二叉树的根结点作为前一棵二叉树根结点的右孩子。
·二叉树转换为树
①加线:若结点存在左孩子,则将该左孩子的右孩子、右孩子的右孩子等所有右孩子都作为该结点的孩子,并将该结点与这些右孩子连起来。
②去线:删除原二叉树中所有结点与右孩子的连线。
③层次调整。
·二叉树转换为森林
①从根结点开始,若右孩子存在, 则把与右孩子结点的连线删除,再查看分离后的二又树;若右孩子存在,则继续删除连线,直到所有右孩子连线都删除为止,得到分离的二叉树。
②将每棵分离后的二又树转换为树。
-
哈夫曼树:带权路径长度WPL最小的二叉树。