105. 从前序与中序遍历序列构造二叉树
难度中等597收藏分享切换为英文关注反馈
根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
分析
二叉树相关的很多问题的解决思路都有分治法的思想在里面。我们复习一下分治法的思想:把原问题拆解成若干个与原问题结构相同但规模更小的子问题,待子问题解决以后,原问题就得以解决,“归并排序”和“快速排序”都是分治法思想的应用,其中“归并排序”先无脑地“分”,在“合”的时候就麻烦一些;“快速排序”开始在 partition 上花了很多时间,即在“分”上使了很多劲,然后就递归处理下去就好了,没有在“合”上再花时间。
抓住“前序遍历的第 1 个元素一定是二叉树的根结点”,不难写出代码。关键还是拿 LeetCode 上面的例子画一个图,思路就很清晰了。
前序遍历数组的第 1 个数(索引为 0)的数一定是二叉树的根结点,于是可以在中序遍历中找这个根结点的索引,然后把“前序遍历数组”和“中序遍历数组”分为两个部分,就分别对应二叉树的左子树和右子树,分别递归完成就可以了。
下面是一个具体的例子,演示了如何计算数组子区间的边界:
这道题完成了以后可以顺便把 「力扣」 第 106 题:从中序与后序遍历序列构造二叉树也一起做了。
参考代码 1:
- Java
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
}
public class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
int preLen = preorder.length;
int inLen = inorder.length;
if (preLen != inLen) {
throw new RuntimeException("Incorr