被裁20240927 --- 视觉目标跟踪算法

参考文献

【1】DeepSeek
【2】bilibili

目前主流的视觉目标跟踪算法

以下是目前主流的视觉目标跟踪算法分类及其应用场景、优缺点总结,涵盖传统方法和深度学习方法:


一、传统跟踪算法

1. 卡尔曼滤波(Kalman Filter)
  • 场景:线性运动预测、简单场景下的单目标跟踪(如无人机跟踪、车辆轨迹预测)。
  • 优点:计算量小、实时性高、适合线性运动模型。
  • 缺点:对非线性运动或复杂遮挡表现差,依赖准确的初始状态和噪声参数调优。
2. 相关滤波(Correlation Filter,如KCF、MOSSE)
  • 场景:实时单目标跟踪(如摄像头监控、机器人视觉)。
  • 优点:利用频域计算加速,速度快(100+ FPS),适合嵌入式设备。
  • 缺点:对尺度变化、遮挡、快速运动鲁棒性差,依赖手工特征(如HOG)。
3. 均值漂移(MeanShift/CamShift)
  • 场景:颜色特征明显的目标跟踪(如交通信号灯、特定颜色物体)。
  • 优点:无需运动模型,计算简单。
  • 缺点:依赖颜色分布,背景颜色干扰易导致跟踪失败。

二、深度学习单目标跟踪算法

1. Siamese系列(SiamFC、SiamRPN、SiamMask)
  • 场景:通用单目标跟踪(如视频会议人脸跟踪、体育赛事运动员跟踪)。
  • 优点:端到端训练,平衡速度与精度,支持在线更新。
  • 缺点:对相似背景干扰敏感,长时遮挡易导致跟踪漂移。
2. Transformer-based(TransT、STARK、MixFormer)
  • 场景:复杂遮挡、形变、快速运动的鲁棒跟踪(如自动驾驶中的行人跟踪)。
  • 优点:全局建模能力强,对长时依赖和遮挡鲁棒。
  • 缺点:计算复杂度高,实时性较差(通常 <30 FPS)。
3. 在线更新模型(ATOM、DiMP)
  • 场景:需要动态适应目标外观变化的场景(如动物行为研究)。
  • 优点:在线优化分类器,适应目标形变和光照变化。
  • 缺点:计算开销大,易受噪声干扰导致模型漂移。

三、多目标跟踪(MOT)算法

1. SORT/DeepSORT
  • 场景:多目标跟踪(如监控摄像头中的行人/车辆计数)。
  • 优点
    • SORT:基于卡尔曼滤波+匈牙利算法,速度极快(100+ FPS)。
    • DeepSORT:加入外观特征(ReID),减少ID切换(Identity Switch)。
  • 缺点:依赖检测器性能(如YOLO),密集遮挡下ID切换仍较多。
2. FairMOT/JDE
  • 场景:实时多目标跟踪(如人群流量统计、自动驾驶)。
  • 优点:联合检测与跟踪(Detection+Embedding),平衡速度与精度。
  • 缺点:检测与特征提取耦合,模型复杂度高。
3. ByteTrack/OC-SORT
  • 场景:遮挡频繁的低质量视频(如交通拥堵场景)。
  • 优点
    • ByteTrack:利用低置信度检测框,减少漏检。
    • OC-SORT:通过轨迹插值抗遮挡,ID切换率低。
  • 缺点:对检测器噪声敏感,需额外计算资源。

四、应用场景与算法选择建议

场景需求推荐算法
嵌入式设备实时跟踪KCF、SORT
复杂遮挡/形变TransT、OC-SORT
多目标且高精度要求DeepSORT、FairMOT
长时跟踪(如野生动物监测)SiameseRPN++、GlobalTrack
低光照/模糊视频ATOM、DiMP(在线更新能力强)

五、算法优缺点对比总结

算法类型优点缺点
卡尔曼滤波轻量、实时性强仅适合线性运动,无外观建模
相关滤波(KCF)高频实时跟踪尺度变化和遮挡鲁棒性差
Siamese网络端到端、速度精度平衡长时遮挡易失效
Transformer跟踪全局建模、抗遮挡强计算资源消耗大
DeepSORT多目标ID保持稳定依赖检测器,密集场景ID切换

六、未来趋势

  1. 轻量化:结合神经网络剪枝、量化技术,提升嵌入式部署能力。
  2. 多模态融合:结合RGB、深度、红外等多传感器数据。
  3. 无监督学习:减少对标注数据的依赖(如自监督跟踪)。
  4. Transformer+CNN混合架构:兼顾全局推理与局部特征提取。

根据实际需求(硬件条件、场景复杂度、实时性要求),选择适合的算法组合(如YOLOv8检测+ByteTrack跟踪)。

卡尔曼滤波实现目标跟踪

待续…

DeepSort、ByteTrack

开源项目参考:https://github.com/shaoshengsong/DeepSORT
DeepSort = YOLO + 视觉外观特征 + 卡尔曼滤波 + 匈牙利算法

依赖:opencv4.x,eigen3

文件结构:

  • 目标检测模型(YOLO模型):yolov5s.onnx
    使用YOLO训练,并导出为onnx格式。
  • 目标检测模型对应的标签文件:例如coco_80_labels_list.txt
    根据训练的数据集而定。
  • 特征训练模型:feature.onnx
    可使用TensorFlow或PyTorch对数据集进行特征训练,并将模型导出为onnx格式。
  • ONNX Runtime 硬件加速文件:onnxruntime-linux-x64-1.12.1
    根据硬件平台和操作系统,到https://onnxruntime.ai官网下载。

代码 实践

需要根据情况修改的文件:YOLOv5Detector.cpp、main.cpp、dataType.h

const std::string  k_feature_model_path ="../feature.onnx";
const std::string  k_detect_model_path ="../yolov5s.onnx";
 cv::VideoCapture capture("../3.mp4");
 std::string file="../coco_80_labels_list.txt";

使用 DeepSort 或 ByteTrack:main.cpp

 test_deepsort(frame, results,mytracker);
 //test_bytetrack(frame, results,bytetracker);

只检测行人:main.cpp

 if(dr.classId == 0) //person only:
 {
     objects.push_back(dr);
     cv::rectangle(frame, dr.box, cv::Scalar(255, 0, 0), 2);
     get_detections(DETECTBOX(dr.box.x, dr.box.y,dr.box.width,  dr.box.height),dr.confidence,  detections);
 }

在这里插入图片描述

数据集

参考:DeepSeek

以下是几个常用的多目标视觉跟踪(Multi-Object Tracking, MOT)测试视频及其下载地址,这些数据集被广泛用于学术界和工业界的算法验证:


1. MOT Challenge 数据集

  • 简介:多目标跟踪领域最权威的基准测试数据集,包含行人、车辆等多种场景。
  • 下载地址
    • 官网:https://motchallenge.net/
    • 包含多个子数据集(如 MOT17, MOT20),提供标注数据和视频。
  • 特点
    • 高分辨率、复杂场景(拥挤、遮挡等)。
    • 提供训练集和测试集,支持算法公平对比。

2. KITTI Tracking 数据集

  • 简介:自动驾驶领域的经典数据集,专注于车辆和行人的多目标跟踪。
  • 下载地址
    • 官网:http://www.cvlibs.net/datasets/kitti/eval_tracking.php
    • 需要注册并填写数据使用协议。
  • 特点
    • 真实道路场景,包含激光雷达、摄像头等多模态数据。
    • 适合测试复杂交通场景下的跟踪算法。

3. UA-DETRAC 数据集

  • 简介:专注于车辆多目标跟踪的大规模数据集,适用于交通监控场景。
  • 下载地址
    • 官网:http://detrac-db.rit.albany.edu/
    • 直接通过 HTTP/FTP 下载:http://detrac-db.rit.albany.edu/Data
  • 特点
    • 包含 10 小时高清视频,超过 8 万个标注框。
    • 涵盖不同天气和光照条件。

4. YouTube-BB 和 YouTube-8M

  • 简介:YouTube 视频片段中的多目标跟踪数据集,覆盖多样化物体类别。
  • 下载地址
    • YouTube-BB:https://research.google.com/youtube-bb/
    • YouTube-8M:https://research.google.com/youtube8m/
  • 特点
    • 动态背景、快速运动目标,适合测试鲁棒性。
    • 需要自行提取视频片段(工具见官网)。

5. TAO 数据集(TAO: A Large-Scale Benchmark for Tracking Any Object)

  • 简介:由 FAIR(Facebook AI Research)发布的通用目标跟踪数据集。
  • 下载地址
    • 官网:https://taodataset.org/
  • 特点
    • 覆盖 833 类物体,包含密集标注的长视频。
    • 支持开放世界(Open-World)跟踪任务。

6. PETS 数据集(Performance Evaluation of Tracking and Surveillance)

  • 简介:经典的人群跟踪与监控数据集。
  • 下载地址
    • 官网:http://www.cvg.reading.ac.uk/PETS2009/
  • 特点
    • 包含多视角、高密度人群场景。
    • 适合测试遮挡处理能力。

7. 自定义视频生成工具

  • MOTSynth:合成数据集生成工具,可自定义场景、目标数量和运动模式。
    • GitHub:https://github.com/dvl-tum/motsynth
  • Blender 脚本:利用 Blender 生成虚拟多目标跟踪视频。
    • 教程:https://blender.org/

使用建议

  1. 学术研究:优先选择 MOT ChallengeKITTI,确保结果可比性。
  2. 实际应用:根据场景选择 UA-DETRAC(交通)或 TAO(通用物体)。
  3. 快速测试:从 YouTube 公开视频中截取片段(注意版权)。

如果需要具体视频的直接下载链接,可访问上述官网或通过学术平台(如 Kaggle、Zenodo)搜索公开分享的资源。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值