一、豪兰德(howland)电流源电路
Howland电流源是一种由运算放大器构成的电压-电流转换电路,能够提供与输入电压成比例的负载电流,且负载电流与负载阻抗无关。
由上图分析可知,howland电路同时具有负反馈(红色回路)和正反馈(橙色回路),根据“虚断”和“虚短”特点,U-=U+。
根据“虚断”,R1和R2电流相等
U
I
N
−
U
−
R
1
=
U
−
−
U
o
R
2
\frac{U_{IN} - U_{-}}{R_1}= \frac{U_{-} - U_{o}}{R_2}
R1UIN−U−=R2U−−Uo
故
U
−
=
(
U
I
N
R
1
+
U
o
R
1
)
∗
R
1
∗
R
2
R
1
+
R
2
{U_{-}}= (\frac{U_{IN} }{R_1} +\frac{U_{o} }{R_1})* \frac{R_{1} * R_{2}}{R_1+R_2}
U−=(R1UIN+R1Uo)∗R1+R2R1∗R2
同相端(+)结点电流满足
U
+
R
4
+
i
o
=
U
o
−
U
+
R
3
\frac{U_{+} }{R_4} +{i_{o}}= \frac{U_{o} - U_{+}}{R_3}
R4U++io=R3Uo−U+
故U+
U
+
=
(
U
o
R
3
−
i
o
)
∗
R
3
∗
R
4
R
3
+
R
4
{U_{+}}= (\frac{U_{o} }{R_3} -{i_o})* \frac{R_{3} * R_{4}}{R_3+R_4}
U+=(R3Uo−io)∗R3+R4R3∗R4
因
U
+
=
U
−
{U_+}={U_-}
U+=U−
故
R
2
R
1
+
R
2
∗
U
I
N
+
R
1
R
1
+
R
2
∗
U
o
=
R
4
R
3
+
R
4
∗
U
o
−
R
3
∗
R
4
R
3
+
R
4
∗
i
o
\frac{R_2 }{{R_1} +{R_2}}*{U_{IN}}+\frac{R_1}{{R_1} +{R_2}}*{U_{o}}=\frac{R_4}{{R_3} +{R_4}}*{U_o}-\frac{R_{3} * R_{4}}{R_3+R_4}*{i_o}
R1+R2R2∗UIN+R1+R2R1∗Uo=R3+R4R4∗Uo−R3+R4R3∗R4∗io
若
R
2
R
1
=
R
3
R
4
\frac{R_2 }{{R_1} }=\frac{R_3}{{R_4} }
R1R2=R4R3
则
R
2
R
1
+
R
2
=
R
3
R
3
+
R
4
,
R
1
R
1
+
R
2
=
R
4
R
3
+
R
4
\frac{R_2 }{{R_1} +{R_2}}=\frac{R_3}{{R_3} +{R_4}},\frac{R_1}{{R_1} +{R_2}}=\frac{R_4}{{R_3} +{R_4}}
R1+R2R2=R3+R4R3,R1+R2R1=R3+R4R4
即
i
o
=
−
U
I
N
R
4
{{i_o} }=-\frac{U_{IN}}{{R_4} }
io=−R4UIN
输入电压,最后转换成电流,具有电压-电流转换功能,且io仅受控于UIN,不受负载电阻的影响。
求解输出电阻,令UIN=0,断开RL,在RL处叠加交流电压URo,产生电流Io,则
R
o
=
U
R
o
I
o
{{R_o} }=\frac{U_{Ro}}{{I_o} }
Ro=IoURo
运放输出端电压
U
o
=
(
1
+
R
2
R
1
)
∗
U
R
o
{U_{o}}= (1+\frac{R_{2} }{R_1})*{U_{Ro}}
Uo=(1+R1R2)∗URo
输出电流
I
o
=
U
o
−
U
R
o
R
3
−
U
R
o
R
4
{I_{o}}= \frac{U_{o} - U_{Ro}}{R_3}- \frac{ U_{Ro}}{R_4}
Io=R3Uo−URo−R4URo
故
I
o
=
R
2
R
1
R
3
∗
U
R
o
−
U
R
o
R
4
=
R
2
R
1
∗
U
R
o
R
3
−
R
3
R
4
∗
U
R
o
R
3
{I_{o}}= \frac{R_2 }{{R_1} {R_3}}*{U_{Ro}}- \frac{ U_{Ro}}{R_4} =\frac{R_2 }{{R_1}} *\frac{U_{Ro}}{R_3}-\frac{R_3}{{R_4}} *\frac{U_{Ro}}{R_3}
Io=R1R3R2∗URo−R4URo=R1R2∗R3URo−R4R3∗R3URo
因
R
2
R
1
=
R
3
R
4
\frac{R_2 }{{R_1} }=\frac{R_3}{{R_4} }
R1R2=R4R3
所以
I
o
=
0
{I_{o}}=0
Io=0
故
R
o
=
U
R
o
I
o
=
∞
{{R_o} }=\frac{U_{Ro}}{{I_o} }=∞
Ro=IoURo=∞
因此只有选择合适的R1、R2、R3和R4参数,输出电阻才能趋近无穷大,输出电流才能近似电流源。
二、multium仿真howland电流源电路
选取R1=R2=R3=R4=10k,即
R
2
R
1
=
R
3
R
4
=
1
\frac{R_2 }{{R_1} }=\frac{R_3}{{R_4}}=1
R1R2=R4R3=1
i
o
=
−
U
I
N
R
4
=
−
2
V
10
k
Ω
=
−
200
u
A
{{i_o} }=-\frac{U_{IN}}{{R_4}}=-\frac{2V}{{10kΩ}}=-200uA
io=−R4UIN=−10kΩ2V=−200uA
R5为可调电阻,模拟负载电阻变化,负载电阻变化时,输出电流保持在200uA,满足电流源输出电流不随负载波动变化的特性。
更多系列文章
▷ 《具有运放的可调稳压电路》
▷ 《三极管三种基本放大电路:共射、共集、共基放大电路》
▷ 《三极管基本放大电路静态及动态参数计算》
▷ 《线性稳压电源:稳压管+NPN降压电路(12V降至5V)》
▷ 《LDO工作原理与仿真》