torch.view(), squeeze, unsqueeze

本文详细介绍了PyTorch中三种重要的张量形状操作:view(), squeeze()和unsqueeze()。通过实例展示了如何使用这些函数来改变张量的维度,这对于深度学习模型的数据预处理非常关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. torch.view()

data.view(a,b) # 把data 转换成 a*b 维的矩阵
data.view(k,-1)

2. torch.squeeze()

data.squeeze(0) # 表示在第一维度压缩,如果第一维度是1,则直接去掉
img=content
img.shape
torch.Size([13, 800, 600])
img=content.squeeze(0)
img.shape
torch.Size([3, 800, 600])

3. torch.unsqueeze()

与sequeeze() 相反,增加一个维度,维度为1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值