chenchen题解:最长不下降子序列

本文介绍了一种使用动态规划解决最长不下降子序列问题的方法。通过定义dp[i]为到第i个字符的最长不下降子序列长度,进行状态转移,最终求得整个序列的最长不下降子序列长度。

题目描述:

blablablablablablablablablabla 传送门

算法思想:

动态规划题:
状态表示:dp[i]表示到i个字符的最长不下降子序列的长度
状态转移:当该子序列为不下降子序列且长度比当前的maxx长,就更新maxx

时间复杂度:

O ( n 2 ) O(n^2) O(n2)

代码实现:

#include <bits/stdc++.h>
using namespace std;
const int N=5010;
int a[N], dp[N]; 

int main(){
  int n, ans=0;
  cin>>n;
  for(int i=1;i<=n;i++) cin>>a[i];
  for(int i=1;i<=n;i++){
  	int maxx=0;
    for(int j=1;j<i;j++){
    	if(a[j]<=a[i]&&dp[j]>maxx){ //a[j]<=a[i]保证不下降
        	maxx=dp[j];
        }
    }
    dp[i]=maxx+1;
  }
  for(int i=1;i<=n;i++){
  	if(ans<dp[i]) ans=dp[i];
  }
  cout<<ans<<endl;
  return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值