离散数学 一 命题逻辑

本文深入探讨了命题逻辑的基础概念,包括命题、真值、联结词、重言式和重言蕴含式。详细阐述了蕴含的充分必要条件,解析了或的二义性,并介绍了命题公式的符号化、等价公式以及范式。此外,还讨论了推理规则,如直接推理和条件推理,以及如何利用这些规则进行有效的逻辑推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一章 命题逻辑

1-1 命题与命题的真值

  1. 命题的概念
    2050年人类将到达火星是命题。
    x+y<5不是命题。
  2. 命题的真值
  3. 简单命题(原子命题)与复合命题(分子命题):非A是复合命题

1-2 联结词

  • 真值表
    PQ非PP合取QP析取QP异或QP蕴涵QP等价Q
    FFTFFFTT
    FTTFTTTF
    TFFFTTFF
    TTFTTFTT
  • 关于蕴含(条件):
    • P->Q:
      P是P->Q的前件,Q是P->Q的后件
      P是Q的充分条件,Q是P的必要条件
    • 充分条件和必要条件:
      充分条件:如果P则Q;只要P就Q;若P则Q;P->Q
      必要条件:只有P才Q;仅当P,Q;Q,仅当P。Q->P
  • 关于或者的二义性:可兼取的或和不可兼取的或

1-3 命题公式及命题符号化

  • 常值命题、命题变元、指派
  • 合式公式:递归定义,最外层括号忽略
  • 真值表:二进制升序或降序排列;
  • 命题符号化

1-4 重言式和重言蕴含式

  • 重言式(永真式)和矛盾式(永假式)
    • 重言式的证明方法:
      1. 列真值表
      2. 等价变换化简成T
      3. 主析取范式
    • 永真式性质:
      1. A永真式,则非A永假式
      2. A,B永真式,则A合取B,A析取B,A蕴含B,A等价B永真
      3. A永真,A的 置换例式 永真
  • 重言(永真)蕴含式:
    A->B是重言式,则A重言(永真)蕴含B,记作A=>B,即“A能推出B”
    • 重言蕴含式的证明方法:
      1. 真值表
      2. 假设前件为真,推出后件为真
      3. 假设后件为假,推出前件为假
    • 性质:
      1. 自反性
      2. 传递性
      3. 反对称性:if A=>B and B=>A, then A<=>B

1-5 等价公式

  • 含义:不论指派,真值相同
  • 重要的等价公式:
    1. 对合律
    2. 幂等律
    3. 结合律
    4. 交换律
    5. 分配律:P\/(Q/\R)<=>(P\/Q)/\(PvR) P/\(Q\/R)<=>(P/\Q)\/(P^R)
    6. 吸收律
    7. 德摩根律
    8. 同一律
    9. 零律
    10. 互补律
    11. P->Q<=>!PVQ<=>!Q->!P
    12. P<->Q<=>(P->Q)/\(Q->P)<=>(!PVQ)/(PV!Q)<=>(P/\Q)V(!P/\~Q)
  • 证明方法:
    • 真值表
    • 等价变换
  • 对偶式:一定要去掉->
    • 用对偶式求否定:!A(P1,P2,…,Pn)<=>A*(!P1,!P2,…,!Pn)
    • 对偶原理:两公式等价,两公式的对偶式等价

1-6 范式

  • 析取式、合取式、析取范式、合取范式、主析取范式、主合取范式、大项、小项
    • 合取式:^
    • 析取式:V
    • 析取范式:合V合
    • 合取范式:析^析
    • 主析取:小项V小项
    • 主合取:大项^大项
  • 析取范式/合取范式求法:
    • 先用公式去掉->和<->
    • 将~移到命题变元之前
    • 整理公式成所需形式
  • 小项的性质:
    • n个变元有2^n个小项
    • 每组指派有且只有一个小项为T:m0,m1,…
  • 主析取范式写法
    • 列真值表:
      1. 列出真值表;
      2. 找出真值表中每个T对应的小项
    • 等价变换:先写出析取范式,再补元
  • 大项的性质:
    • n个变元有2^n个大项
    • 每组指派有且只有一个大项为F:M0,M1,…
  • 主合取范式的写法:
    • 列真值表;
    • 找出真值表中每个F对应的大项
  • 等价变换:先写出合取范式,再补元
  • PVQ:

    是析取式,合取范式,析取范式,主析取范式的大项,主合取范式;不是合取式,主合取范式的大项,主析取范式。

1-7 命题逻辑推理

  • 推理、前提、(有效)结论
  • 推理规则:P、T
  • 逻辑推理的格式
  • 推理方法:
    • 直接推理
    • 条件推理:if H1/\H2/\…/\Hn/\R=>S, then H1/\H2/\…/\Hn=>R->S
      CP规则
    • 反证法:相容的(一致的),不相容的(不一致的)
      只要证明H1/\H2/\…/\Hn/\C是矛盾式;假设前提
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值