第一章 命题逻辑
1-1 命题与命题的真值
- 命题的概念
2050年人类将到达火星是命题。
x+y<5不是命题。 - 命题的真值
- 简单命题(原子命题)与复合命题(分子命题):非A是复合命题
1-2 联结词
- 真值表
P Q 非P P合取Q P析取Q P异或Q P蕴涵Q P等价Q F F T F F F T T F T T F T T T F T F F F T T F F T T F T T F T T - 关于蕴含(条件):
- P->Q:
P是P->Q的前件,Q是P->Q的后件
P是Q的充分条件,Q是P的必要条件 - 充分条件和必要条件:
充分条件:如果P则Q;只要P就Q;若P则Q;P->Q
必要条件:只有P才Q;仅当P,Q;Q,仅当P。Q->P
- P->Q:
- 关于或者的二义性:可兼取的或和不可兼取的或
1-3 命题公式及命题符号化
- 常值命题、命题变元、指派
- 合式公式:递归定义,最外层括号忽略
- 真值表:二进制升序或降序排列;
- 命题符号化
1-4 重言式和重言蕴含式
- 重言式(永真式)和矛盾式(永假式)
- 重言式的证明方法:
- 列真值表
- 等价变换化简成T
- 主析取范式
- 永真式性质:
- A永真式,则非A永假式
- A,B永真式,则A合取B,A析取B,A蕴含B,A等价B永真
- A永真,A的 置换例式 永真
- 重言式的证明方法:
- 重言(永真)蕴含式:
A->B是重言式,则A重言(永真)蕴含B,记作A=>B,即“A能推出B”- 重言蕴含式的证明方法:
- 真值表
- 假设前件为真,推出后件为真
- 假设后件为假,推出前件为假
- 性质:
- 自反性
- 传递性
- 反对称性:if A=>B and B=>A, then A<=>B
- 重言蕴含式的证明方法:
1-5 等价公式
- 含义:不论指派,真值相同
- 重要的等价公式:
- 对合律
- 幂等律
- 结合律
- 交换律
- 分配律:P\/(Q/\R)<=>(P\/Q)/\(PvR) P/\(Q\/R)<=>(P/\Q)\/(P^R)
- 吸收律
- 德摩根律
- 同一律
- 零律
- 互补律
- P->Q<=>!PVQ<=>!Q->!P
- P<->Q<=>(P->Q)/\(Q->P)<=>(!PVQ)/(PV!Q)<=>(P/\Q)V(!P/\~Q)
- 证明方法:
- 真值表
- 等价变换
- 对偶式:一定要去掉->
- 用对偶式求否定:!A(P1,P2,…,Pn)<=>A*(!P1,!P2,…,!Pn)
- 对偶原理:两公式等价,两公式的对偶式等价
1-6 范式
- 析取式、合取式、析取范式、合取范式、主析取范式、主合取范式、大项、小项
- 合取式:^
- 析取式:V
- 析取范式:合V合
- 合取范式:析^析
- 主析取:小项V小项
- 主合取:大项^大项
- 析取范式/合取范式求法:
- 先用公式去掉->和<->
- 将~移到命题变元之前
- 整理公式成所需形式
- 小项的性质:
- n个变元有2^n个小项
- 每组指派有且只有一个小项为T:m0,m1,…
- 主析取范式写法
- 列真值表:
- 列出真值表;
- 找出真值表中每个T对应的小项
- 等价变换:先写出析取范式,再补元
- 列真值表:
- 大项的性质:
- n个变元有2^n个大项
- 每组指派有且只有一个大项为F:M0,M1,…
- 主合取范式的写法:
- 列真值表;
- 找出真值表中每个F对应的大项
- 等价变换:先写出合取范式,再补元
- PVQ:
是析取式,合取范式,析取范式,主析取范式的大项,主合取范式;不是合取式,主合取范式的大项,主析取范式。
1-7 命题逻辑推理
- 推理、前提、(有效)结论
- 推理规则:P、T
- 逻辑推理的格式
- 推理方法:
- 直接推理
- 条件推理:if H1/\H2/\…/\Hn/\R=>S, then H1/\H2/\…/\Hn=>R->S
CP规则 - 反证法:相容的(一致的),不相容的(不一致的)
只要证明H1/\H2/\…/\Hn/\C是矛盾式;假设前提