POJ1050-To the Max

本文深入探讨了在一个二维整数数组中寻找具有最大和的子矩阵的问题,提供了一个有效的算法实现,通过逐行累加并应用动态规划思想,解决了如何快速定位到具有最大和的子矩形区域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.
Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output

Output the sum of the maximal sub-rectangle.
Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1

8 0 -2
Sample Output

15
Source

Greater New York 2001

#include <iostream>
#include <cstring>
using namespace std;

int dp[105][105];
int n, Max;
int buf[105];

int getmax() {
	int temp[105], max = n * (-127);
	memset(temp, 0 , sizeof(temp));
	for (int i = 1; i <= n; i++) {
		temp[i] = temp[i - 1] > 0 ? temp[i - 1] + buf[i] : buf[i];
		if (max < temp[i])
			max = temp[i];
	}
	return max;
}

void read() {
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++)
			cin >> dp[i][j];
	}
}

int solve() {
	Max = (-127) * n;
	for (int i = 0; i < n; i++) {
		for (int j = i; j < n; j++) {
			memset(buf, 0 , sizeof(buf));
			for (int k = 0; k < n; k++)
				for (int l = i; l <= j; l++)
					buf[k] += dp[k][l];
			int d = getmax();
			if (d > Max)
				Max = d;
		}
	}
	return Max;
}

int main() {
	while (cin >> n) {
		read();
		solve();
		cout << Max << endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值