NR R15中的TypeII CSI-Codebook量化反馈

本文介绍了5G多小区多用户MIMO-OFDM系统中,使用DFT基向量表示beamforming vector,并通过宽带有线束组和子带BCCs实现空域压缩的预编码矩阵构建。在信道估计的基础上,采用R15 Type II Codebook进行幅度和相位调整,通过信道协方差矩阵的特征分解获取BCCs。文章还提及了相位预处理和幅度量化的方法,以减少量化误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系统模型

我们考虑一个下行的多小区多用户MIMO-OFDM系统,假设一共有NNN个子带(subband),SSS个小区(cell),每个小区被划分为3个部分(sectors)。在每个sector内,基站(BS)同时服务KKK个用户。另外,我们考虑的BS模型为双极化的UPA(UPA: Uniform Planar Array),对每个极化方向,水平和竖直维度上分别有N1,N2N_1, N_2N1,N2个antenna ports,因此BS端一共有Np=2N1N2N_p=2N_1N_2Np=2N1N2个antenna ports。每个用户终端装备NrN_rNr根接收天线。这里我们以单流为例,位于第sss小区的第kkk个用户,在第nnn个子带的接收信号为:
ys,k[n]=Hs,k[n]Ws[n]xs[n]+∑j≠sHj,k[n]Wj[n]xj[n]+ns,k[n](1) \boldsymbol y_{s,k} [n] = \boldsymbol H_{s,k}[n] \boldsymbol W_s [n] \boldsymbol x_s[n] + \sum_{j \neq s} \boldsymbol H_{j,k} [n] \boldsymbol W_j [n] \boldsymbol x_j[n] + \boldsymbol n_{s,k}[n] \tag{1} ys,k[n]=Hs,k[n]Ws[n]xs[n]+j=sHj,k[n]Wj[n]xj[n]+ns,k[n](1)

nnn个子带上,Hs,k[n]∈CNr×Np\boldsymbol H_{s,k}[n] \in \mathbb C^{N_r \times N_p}Hs,k[n]CNr×Np表征BS(第s个小区)与用户kkk之间的信道矩阵。Ws[n]∈[ws,1[n],ws,2[n],⋯ ,ws,K[n]]∈CNp×K\boldsymbol W_s[n] \in[ \boldsymbol w_{s,1}[n], \boldsymbol w_{s,2}[n], \cdots, \boldsymbol w_{s,K}[n]] \in \mathbb C^{N_p \times K}Ws[n][ws,1[n],ws,2[n],,ws,K[n]]CNp×KKKK个用户的预编码矩阵(precoder matrix),xs[n]=[xs,1[n],xs,2[n],⋯ ,xs,K[n]]T∈CK×1\boldsymbol x_s[n] =[\boldsymbol x_{s,1}[n], \boldsymbol x_{s,2}[n], \cdots, \boldsymbol x_{s,K}[n]]^T \in \mathbb C^{K \times 1}xs[n]=[xs,1[n],xs,2[n],,xs,K[n]]TCK×1是BS发送的信号向量。

在该模型下,我们假设UE端能估计出信道矩阵Hs,k[n]\boldsymbol H_{s,k}[n]Hs,k[n],并且基于估计出的信道矩阵Hs,k\boldsymbol H_{s,k}Hs,k(这里省略子带),得到预编码矩阵,并将该预编码矩阵反馈到BS端。

假设UE端采用的量化反馈方式为R15 Type II Codebook,该反馈方式包括

  • wideband beam group
  • beam combination coefficients (BCCs) of subband.

注意到,beam线性组合的方式,本质上来讲就是在空域(spatial domain)上进行压缩,因为信道的空间信息可以被表征为几个beam和相应的线性组合系数。

构建预编码矩阵:空域压缩(Spatial Domain Compression)

我们采用DFT基向量来表征beamforming vector,但是若信道中存在大量的散射体,那么BS就需要更多的beam来捕捉直视径和多条反射径,如下图所示,BS一共利用了LLL个beam来捕捉用户kkk的多径信道

具体来看,空域上的信道信息包含包含了宽带选择的几个beam,以及子带的BCCs。又因为信道的传播路径在两个极化方向上几乎没有差别,所以在两个天线极化方向上,我们使用相同的beam。

定义wideband beam group matrix Wˉ1∈CNp×2L\bar \boldsymbol W_1 \in \mathbb C^{N_p \times 2L}Wˉ1CNp×2L
Wˉ1=[b1⋯bL00b1⋯bL](2) \bar \boldsymbol W_1 = \left[ \begin{matrix} \boldsymbol{b}_1\cdots \boldsymbol{b}_L& \boldsymbol{0}\\ \boldsymbol{0}& \boldsymbol{b}_1\cdots \boldsymbol{b}_L\\ \end{matrix} \right] \tag{2} Wˉ1=[b1bL00b1bL](2)

其中bl∈CN1N2×1,  l∈{1,⋯ ,L}\boldsymbol b_l \in \mathbb C^{N_1 N_2 \times 1}, \ \ l \in\{1,\cdots, L\}blCN1N2×1,  l{1,,L}是一个DFT基向量,对应于第lll个beam,R15 TypeII CSI-Codebook规定这LLL个beam是相互正交的。因此Wˉ1\bar \boldsymbol W_1Wˉ1解决了wideband beam group的问题,还有BCCs需要考虑。

对于单流(rank=1)的第nnn个子带,我们用向量wn∈C2L×1\boldsymbol w_n \in \mathbb C^{2L \times 1}wnC2L×1来表征BCCs,一般是将信道矩阵的奇异向量映射到wideband beam group matrix Wˉ1\bar \boldsymbol W_1Wˉ1得到,即
wn=Wˉ1Hen(3) \boldsymbol w_n = \bar \boldsymbol W^H_1 \boldsymbol e_n \tag{3} wn=Wˉ1Hen(3)

其中en∈CNp×1\boldsymbol e_n \in \mathbb C^{N_p \times 1}enCNp×1是信道在第nnn个子带的奇异向量。

注意到,在实际应用中TypeII CSI-Codebook的幅度调整可以分为WB+SB和WB-only两种方式,这里我们主要关注前者,即WB+SB,因此,实际应用中的wideband matrixW1\boldsymbol W_1W1
W1=[b1⋯bL00b1⋯bL][a1WB0⋯00a2WB⋱⋮⋮⋱⋱00⋯0a2LWB](4) \boldsymbol{W}_1=\left[ \begin{matrix} \boldsymbol{b}_1\cdots \boldsymbol{b}_L& \boldsymbol{0}\\ \boldsymbol{0}& \boldsymbol{b}_1\cdots \boldsymbol{b}_L\\ \end{matrix} \right] \left[ \begin{matrix} a_{1}^{WB}& 0& \cdots& 0\\ 0& a_{2}^{WB}& \ddots& \vdots\\ \vdots& \ddots& \ddots& 0\\ 0& \cdots& 0& a_{2L}^{WB}\\ \end{matrix} \right] \tag{4} W1=[b1bL00b1bL]a1WB000a2WB000a2LWB(4)

右侧的对角矩阵表征WB幅度。

另一方面,subband矩阵W2\boldsymbol W_2W2同时携带幅度和相位信息,一般写为
W2=[a1SB0⋯00a2SB⋱⋮⋮⋱⋱00⋯0a2LSB][ejϕ1ejϕ2⋮ejϕ2L](5) \boldsymbol{W}_2=\left[ \begin{matrix} a_{1}^{SB}& 0& \cdots& 0\\ 0& a_{2}^{SB}& \ddots& \vdots\\ \vdots& \ddots& \ddots& 0\\ 0& \cdots& 0& a_{2L}^{SB}\\ \end{matrix} \right] \left[ \begin{array}{c} e^{j\phi _1}\\ e^{j\phi _2}\\ \vdots\\ e^{j\phi _{2L}}\\ \end{array} \right] \tag{5} W2=a1SB000a2SB000a2LSBejϕ1ejϕ2ejϕ2L(5)

对于宽带通信系统,一般会涉及多个subband,即对不同的nnn,矩阵W2\boldsymbol W_2W2并不相同,且互相之间是并行的。我们用下图表征预编码矩阵
W=W1W2(6)\boldsymbol W = \boldsymbol W_1 \boldsymbol W_2 \tag{6}W=W1W2(6)

wideband和subband结构如下图所示
在这里插入图片描述

(注意到,虽然上图所显示的结构在频域上是并行的,但是我们可以利用频域的相关性,类比空域,在频域上进行压缩。)

矩阵映射得到Beam线性组合的系数

我们将计算BCCs的步骤拆分为以下三步

  • 计算信道协方矩阵,对第nnn个子带
    Rn=Hs,kH[n]Hs,k[n]∈CNp×Np(7) \boldsymbol R_n = \boldsymbol H^{H}_{s,k} [n] \boldsymbol H_{s,k} [n]\in \mathbb C^{N_p \times N_p} \tag{7} Rn=Hs,kH[n]Hs,k[n]CNp×Np(7)

  • 将信道协方差矩阵Rn\boldsymbol R_nRn映射到Wideband beam group matrix Wˉ1\bar \boldsymbol W_1Wˉ1上,
    R^n=Wˉ1HRnWˉ1∈C2L×2L(8) \hat \boldsymbol R_n = \bar \boldsymbol W_1^H \boldsymbol R_n \bar \boldsymbol W_1 \in \mathbb C^{2L \times 2L} \tag{8} R^n=Wˉ1HRnWˉ1C2L×2L(8)

  • R^n\hat \boldsymbol R_nR^n的特征分解
    R^n=UΣUH∈C2L×2L(9) \hat \boldsymbol R_n = \boldsymbol U \boldsymbol \Sigma \boldsymbol U^H \in \mathbb C^{2L \times 2L} \tag{9} R^n=UΣUHC2L×2L(9)

对于单流数据传输,主特征值对应的主特征向量就 wn=u1∈C2L\boldsymbol w_n = \boldsymbol u_1 \in \mathbb C^{2L }wn=u1C2L 是第nnn个子带上的BCCs。

相位预处理

[2] 对相位预处理有较为详尽的说明,这里简述其中心思想。相位预处理的中心思想就是尽可能减少最强Beam的量化误差,为此,对第nnn个子带,我们要求BCCs上的2L2L2L个相位都减去最强beam所对应的相位,这样就保证了最强beam的量化损失是最小的。

幅度量化

[3] 详细阐述了Type II CSI Codebook幅度量化,并提出了一种最优的和次优的幅度量化方法,读者若是感兴趣可以继续深入。

参考

[1] Z. Liu, S. Sun, Q. Gao and H. Li, “CSI Feedback Based on Spatial and Frequency Domains Compression for 5G Multi-User Massive MIMO Systems,” 2019 IEEE/CIC International Conference on Communications in China (ICCC), 2019, pp. 834-839, doi: 10.1109/ICCChina.2019.8855979.
[2] R1-1906348, “Phase preprocessing for type ii csi enhancement,” https:// www.3gpp.org/ftp/tsg ran/WG1 RL1/TSGR1 97/Docs/, 3GPP, Tech. Rep., 2019.
[3] H. Miao, M. D. Mueck and M. Faerber, “Amplitude Quantization for Type-2 Codebook Based CSI Feedback in New Radio System,” 2018 European Conference on Networks and Communications (EuCNC), 2018, pp. 1-9, doi: 10.1109/EuCNC.2018.8442609.

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值