系统模型
我们考虑一个下行的多小区多用户MIMO-OFDM系统,假设一共有NNN个子带(subband),SSS个小区(cell),每个小区被划分为3个部分(sectors)。在每个sector内,基站(BS)同时服务KKK个用户。另外,我们考虑的BS模型为双极化的UPA(UPA: Uniform Planar Array),对每个极化方向,水平和竖直维度上分别有N1,N2N_1, N_2N1,N2个antenna ports,因此BS端一共有Np=2N1N2N_p=2N_1N_2Np=2N1N2个antenna ports。每个用户终端装备NrN_rNr根接收天线。这里我们以单流为例,位于第sss小区的第kkk个用户,在第nnn个子带的接收信号为:
ys,k[n]=Hs,k[n]Ws[n]xs[n]+∑j≠sHj,k[n]Wj[n]xj[n]+ns,k[n](1)
\boldsymbol y_{s,k} [n] = \boldsymbol H_{s,k}[n] \boldsymbol W_s [n] \boldsymbol x_s[n] + \sum_{j \neq s} \boldsymbol H_{j,k} [n] \boldsymbol W_j [n] \boldsymbol x_j[n] + \boldsymbol n_{s,k}[n] \tag{1}
ys,k[n]=Hs,k[n]Ws[n]xs[n]+j=s∑Hj,k[n]Wj[n]xj[n]+ns,k[n](1)
第nnn个子带上,Hs,k[n]∈CNr×Np\boldsymbol H_{s,k}[n] \in \mathbb C^{N_r \times N_p}Hs,k[n]∈CNr×Np表征BS(第s个小区)与用户kkk之间的信道矩阵。Ws[n]∈[ws,1[n],ws,2[n],⋯ ,ws,K[n]]∈CNp×K\boldsymbol W_s[n] \in[ \boldsymbol w_{s,1}[n], \boldsymbol w_{s,2}[n], \cdots, \boldsymbol w_{s,K}[n]] \in \mathbb C^{N_p \times K}Ws[n]∈[ws,1[n],ws,2[n],⋯,ws,K[n]]∈CNp×K是KKK个用户的预编码矩阵(precoder matrix),xs[n]=[xs,1[n],xs,2[n],⋯ ,xs,K[n]]T∈CK×1\boldsymbol x_s[n] =[\boldsymbol x_{s,1}[n], \boldsymbol x_{s,2}[n], \cdots, \boldsymbol x_{s,K}[n]]^T \in \mathbb C^{K \times 1}xs[n]=[xs,1[n],xs,2[n],⋯,xs,K[n]]T∈CK×1是BS发送的信号向量。
在该模型下,我们假设UE端能估计出信道矩阵Hs,k[n]\boldsymbol H_{s,k}[n]Hs,k[n],并且基于估计出的信道矩阵Hs,k\boldsymbol H_{s,k}Hs,k(这里省略子带),得到预编码矩阵,并将该预编码矩阵反馈到BS端。
假设UE端采用的量化反馈方式为R15 Type II Codebook,该反馈方式包括
- wideband beam group
- beam combination coefficients (BCCs) of subband.
注意到,beam线性组合的方式,本质上来讲就是在空域(spatial domain)上进行压缩,因为信道的空间信息可以被表征为几个beam和相应的线性组合系数。
构建预编码矩阵:空域压缩(Spatial Domain Compression)
我们采用DFT基向量来表征beamforming vector,但是若信道中存在大量的散射体,那么BS就需要更多的beam来捕捉直视径和多条反射径,如下图所示,BS一共利用了LLL个beam来捕捉用户kkk的多径信道

具体来看,空域上的信道信息包含包含了宽带选择的几个beam,以及子带的BCCs。又因为信道的传播路径在两个极化方向上几乎没有差别,所以在两个天线极化方向上,我们使用相同的beam。
定义wideband beam group matrix Wˉ1∈CNp×2L\bar \boldsymbol W_1 \in \mathbb C^{N_p \times 2L}Wˉ1∈CNp×2L
Wˉ1=[b1⋯bL00b1⋯bL](2)
\bar \boldsymbol W_1 = \left[ \begin{matrix}
\boldsymbol{b}_1\cdots \boldsymbol{b}_L& \boldsymbol{0}\\
\boldsymbol{0}& \boldsymbol{b}_1\cdots \boldsymbol{b}_L\\
\end{matrix} \right] \tag{2}
Wˉ1=[b1⋯bL00b1⋯bL](2)
其中bl∈CN1N2×1, l∈{1,⋯ ,L}\boldsymbol b_l \in \mathbb C^{N_1 N_2 \times 1}, \ \ l \in\{1,\cdots, L\}bl∈CN1N2×1, l∈{1,⋯,L}是一个DFT基向量,对应于第lll个beam,R15 TypeII CSI-Codebook规定这LLL个beam是相互正交的。因此Wˉ1\bar \boldsymbol W_1Wˉ1解决了wideband beam group的问题,还有BCCs需要考虑。
对于单流(rank=1)的第nnn个子带,我们用向量wn∈C2L×1\boldsymbol w_n \in \mathbb C^{2L \times 1}wn∈C2L×1来表征BCCs,一般是将信道矩阵的奇异向量映射到wideband beam group matrix Wˉ1\bar \boldsymbol W_1Wˉ1得到,即
wn=Wˉ1Hen(3)
\boldsymbol w_n = \bar \boldsymbol W^H_1 \boldsymbol e_n \tag{3}
wn=Wˉ1Hen(3)
其中en∈CNp×1\boldsymbol e_n \in \mathbb C^{N_p \times 1}en∈CNp×1是信道在第nnn个子带的奇异向量。
注意到,在实际应用中TypeII CSI-Codebook的幅度调整可以分为WB+SB和WB-only两种方式,这里我们主要关注前者,即WB+SB,因此,实际应用中的wideband matrixW1\boldsymbol W_1W1为
W1=[b1⋯bL00b1⋯bL][a1WB0⋯00a2WB⋱⋮⋮⋱⋱00⋯0a2LWB](4)
\boldsymbol{W}_1=\left[ \begin{matrix}
\boldsymbol{b}_1\cdots \boldsymbol{b}_L& \boldsymbol{0}\\
\boldsymbol{0}& \boldsymbol{b}_1\cdots \boldsymbol{b}_L\\
\end{matrix} \right] \left[ \begin{matrix}
a_{1}^{WB}& 0& \cdots& 0\\
0& a_{2}^{WB}& \ddots& \vdots\\
\vdots& \ddots& \ddots& 0\\
0& \cdots& 0& a_{2L}^{WB}\\
\end{matrix} \right] \tag{4}
W1=[b1⋯bL00b1⋯bL]⎣⎢⎢⎢⎢⎡a1WB0⋮00a2WB⋱⋯⋯⋱⋱00⋮0a2LWB⎦⎥⎥⎥⎥⎤(4)
右侧的对角矩阵表征WB幅度。
另一方面,subband矩阵W2\boldsymbol W_2W2同时携带幅度和相位信息,一般写为
W2=[a1SB0⋯00a2SB⋱⋮⋮⋱⋱00⋯0a2LSB][ejϕ1ejϕ2⋮ejϕ2L](5)
\boldsymbol{W}_2=\left[ \begin{matrix}
a_{1}^{SB}& 0& \cdots& 0\\
0& a_{2}^{SB}& \ddots& \vdots\\
\vdots& \ddots& \ddots& 0\\
0& \cdots& 0& a_{2L}^{SB}\\
\end{matrix} \right] \left[ \begin{array}{c}
e^{j\phi _1}\\
e^{j\phi _2}\\
\vdots\\
e^{j\phi _{2L}}\\
\end{array} \right] \tag{5}
W2=⎣⎢⎢⎢⎢⎡a1SB0⋮00a2SB⋱⋯⋯⋱⋱00⋮0a2LSB⎦⎥⎥⎥⎥⎤⎣⎢⎢⎢⎡ejϕ1ejϕ2⋮ejϕ2L⎦⎥⎥⎥⎤(5)
对于宽带通信系统,一般会涉及多个subband,即对不同的nnn,矩阵W2\boldsymbol W_2W2并不相同,且互相之间是并行的。我们用下图表征预编码矩阵
W=W1W2(6)\boldsymbol W = \boldsymbol W_1 \boldsymbol W_2 \tag{6}W=W1W2(6)
wideband和subband结构如下图所示
(注意到,虽然上图所显示的结构在频域上是并行的,但是我们可以利用频域的相关性,类比空域,在频域上进行压缩。)
矩阵映射得到Beam线性组合的系数
我们将计算BCCs的步骤拆分为以下三步
-
计算信道协方矩阵,对第nnn个子带
Rn=Hs,kH[n]Hs,k[n]∈CNp×Np(7) \boldsymbol R_n = \boldsymbol H^{H}_{s,k} [n] \boldsymbol H_{s,k} [n]\in \mathbb C^{N_p \times N_p} \tag{7} Rn=Hs,kH[n]Hs,k[n]∈CNp×Np(7) -
将信道协方差矩阵Rn\boldsymbol R_nRn映射到Wideband beam group matrix Wˉ1\bar \boldsymbol W_1Wˉ1上,
R^n=Wˉ1HRnWˉ1∈C2L×2L(8) \hat \boldsymbol R_n = \bar \boldsymbol W_1^H \boldsymbol R_n \bar \boldsymbol W_1 \in \mathbb C^{2L \times 2L} \tag{8} R^n=Wˉ1HRnWˉ1∈C2L×2L(8) -
R^n\hat \boldsymbol R_nR^n的特征分解
R^n=UΣUH∈C2L×2L(9) \hat \boldsymbol R_n = \boldsymbol U \boldsymbol \Sigma \boldsymbol U^H \in \mathbb C^{2L \times 2L} \tag{9} R^n=UΣUH∈C2L×2L(9)
对于单流数据传输,主特征值对应的主特征向量就 wn=u1∈C2L\boldsymbol w_n = \boldsymbol u_1 \in \mathbb C^{2L }wn=u1∈C2L 是第nnn个子带上的BCCs。
相位预处理
[2] 对相位预处理有较为详尽的说明,这里简述其中心思想。相位预处理的中心思想就是尽可能减少最强Beam的量化误差,为此,对第nnn个子带,我们要求BCCs上的2L2L2L个相位都减去最强beam所对应的相位,这样就保证了最强beam的量化损失是最小的。
幅度量化
[3] 详细阐述了Type II CSI Codebook幅度量化,并提出了一种最优的和次优的幅度量化方法,读者若是感兴趣可以继续深入。
参考
[1] Z. Liu, S. Sun, Q. Gao and H. Li, “CSI Feedback Based on Spatial and Frequency Domains Compression for 5G Multi-User Massive MIMO Systems,” 2019 IEEE/CIC International Conference on Communications in China (ICCC), 2019, pp. 834-839, doi: 10.1109/ICCChina.2019.8855979.
[2] R1-1906348, “Phase preprocessing for type ii csi enhancement,” https:// www.3gpp.org/ftp/tsg ran/WG1 RL1/TSGR1 97/Docs/, 3GPP, Tech. Rep., 2019.
[3] H. Miao, M. D. Mueck and M. Faerber, “Amplitude Quantization for Type-2 Codebook Based CSI Feedback in New Radio System,” 2018 European Conference on Networks and Communications (EuCNC), 2018, pp. 1-9, doi: 10.1109/EuCNC.2018.8442609.