
自我成长
小小白要努力成长啊
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
大数据题目总结
https://www.cnblogs.com/aspirant/p/7154551.html https://www.cnblogs.com/anliux/p/12850582.html https://www.cnblogs.com/zl1991/p/13109760.html原创 2020-08-05 15:58:59 · 179 阅读 · 0 评论 -
实习复盘(一)
大数据开发实习已经一个多月了,写一写自己在这实习期间的优点和缺点。 优点: 1.和产品小姐姐沟通的都比较顺畅,对业务方的需求也比较清晰。 2.学习能力尚可,感觉自己这一个多月进步的很快,对业务流数据流也有了比较清晰的认识,数据建模的方法和思想也掌握和应用了。 缺点: 1.对于串讲的能力需要提升,汇报演讲需要些自信和果敢,这方面需要提升。 2.考虑的不够周全,有一些业务上可能出现的问题有时候没有思考周全。 反思: 1.技术是为业务提供支持的,想做好技术,对业务就要有理解和反思。 2.不能傻傻的去做需求,要明白原创 2020-07-06 11:18:14 · 429 阅读 · 0 评论 -
非常好用的二分法题目模板那
https://leetcode-cn.com/problems/search-insert-position/solution/te-bie-hao-yong-de-er-fen-cha-fa-fa-mo-ban-python-/ leetcode上的一个博主分享总结的转载 2019-09-07 10:31:17 · 162 阅读 · 0 评论 -
557. 反转字符串中的单词 III python
给定一个字符串,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序。 示例 1: 输入: “Let’s take LeetCode contest” 输出: “s’teL ekat edoCteeL tsetnoc” 注意:在字符串中,每个单词由单个空格分隔,并且字符串中不会有任何额外的空格。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/...原创 2019-06-11 09:21:12 · 168 阅读 · 0 评论 -
485. 最大连续1的个数 python
给定一个二进制数组, 计算其中最大连续1的个数。 示例 1: 输入: [1,1,0,1,1,1] 输出: 3 解释: 开头的两位和最后的三位都是连续1,所以最大连续1的个数是 3. 注意: 输入的数组只包含 0 和1。 输入数组的长度是正整数,且不超过 10,000。 我的代码: class Solution: def findMaxConsecutiveOnes(self, nums: ...原创 2019-06-05 20:48:43 · 302 阅读 · 0 评论 -
476. 数字的补数 python
给定一个正整数,输出它的补数。补数是对该数的二进制表示取反。 注意: 给定的整数保证在32位带符号整数的范围内。 你可以假定二进制数不包含前导零位。 示例 1: 输入: 5 输出: 2 解释: 5的二进制表示为101(没有前导零位),其补数为010。所以你需要输出2。 示例 2: 输入: 1 输出: 0 解释: 1的二进制表示为1(没有前导零位),其补数为0。所以你需要输出0。 这道题一次通过的 ...原创 2019-06-05 10:01:22 · 184 阅读 · 0 评论 -
pytorch学习第一天 :
PyTorch是什么? 基于Python的科学计算包,服务于以下两种场景: 作为NumPy的替代品,可以使用GPU的强大计算能力 提供最大的灵活性和高速的深度学习研究平台 pytorch里面最核心的就是tensor x = torch.rand(5, 3) 5*3的随机tensor x = torch.zeros(5, 3, dtype=torch.long) 5*3的零矩阵,其中数据类型为lon...原创 2019-06-05 09:54:56 · 420 阅读 · 0 评论 -
语义分割之fcn和deeplab1,2,3,
这是总结的一个组会报告,小白参考了一些大神的图片和文字,非常感谢~ 图像语义分割 普通的图像分割,通常意味着传统语义分割,这个时期的图像分割,由于计算机计算能力有限,早期只能处理一些灰度图,后来才能处理rgb图,这个时期的分割主要是通过提取图片的低级特征,然后进行分割.这个阶段一般是非监督学习,分割出来的结果并没有语义的标注,换句话说,分割出来的东西并不知道是什么。 随后,随着计算能力的提高,人们...原创 2019-04-14 20:11:58 · 770 阅读 · 0 评论 -
关于核函数的想法
这篇博客非常方便理解 http://blog.sina.com.cn/s/blog_8c474641010173y0.html转载 2018-11-26 15:36:13 · 145 阅读 · 0 评论 -
随机森林填补法
随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器。该分类器最早由Leo Breiman和Adele Cutler提出。简单来说,是一种bagging的思想,采用bootstrap,生成多棵树,CART(Classification And Regression Tree)构成的。对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一...转载 2018-11-25 10:02:43 · 4060 阅读 · 0 评论 -
错误总结持续成长
错误总结: invalid character in identifier 语句里面用了中文字符原创 2018-11-23 10:46:20 · 124 阅读 · 0 评论