一、层和块
1. 块(block)可以描述单个层、由多个层组成的组件或整个模型本身。
块由 类(class) 表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数。 有些块不需要任何参数。
下面的代码生成一个网络,其中包含一个具有256个隐藏单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。
import torch
from torch import nn
from torch.nn import functional as F #引入神经网络中的函数
#定义神经网络模型,其中包含一个隐藏层,共有256个隐单元
net = nn.Sequential(nn.Linear(20,256), nn.ReLU(), nn.Linear(256,10))
#生成均匀分布的数值,其中torch.randn()生成的是标准正态分布
X = torch.rand(2, 20)
net(X) #输出神经网络预测的值
输出:
tensor([[-0.1779, 0.0444, 0.0364, 0.0319, -0.3020, 0.1947, -0.0332, 0.0709,
0.1321, -0.0129],
[-0.1870, -0.0542, 0.1710, -0.0071, -0.2928, 0.2842, 0.0484, 0.0739,
-0.0333, -0.0661]], grad_fn=<AddmmBackward0>)
在这个例子中, nn.Sequential
定义了一种特殊的Module
, 在PyTorch中表示一个块的类, 它维护了一个由Module
组成的有序列表。 前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
1、自定义块
.每个块必须提供的基本功能:
将输入数据作为其前向传播函数的参数。
通过前向传播函数来生成输出。
计算其输出关于输入的梯度,可通过其反向传播函数进行访问。
存储和访问前向传播计算所需的参数。
根据需要初始化模型参数。
在下面的代码片段中, 编写一个块。 它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。下面的MLP
类继承了表示块的类。 我们的实现只需要提供我们自己的构造函数和前向传播函数。
class MLP(nn.Module):
# 两个全连接的层
def __init__(self):
# 调用MLP的父类Module的构造函数来执行必要的初始化
super().__init__()
self.hidden = nn.Linear(20, 256) # 隐藏层
self.out = nn.Linear(256, 10) # 输出层
# 定义模型的前向传播,即如何根据输入X返回所需的模型输出
def forward(self, X):
# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
return self.out(F.relu(self.hidden(X)))
首先由前向传播函数,它以X
作为输入, 计算带有激活函数的隐藏表示,并输出其未规范化的输出值。 在这个MLP
实现中,两个层都是实例变量。
X = torch.rand(2, 20)
# 实例化类
net = MLP()
net(X)
输出:
tensor([[ 0.0605, 0.1928, 0.0543, 0.0146, -0.2271, -0.0047, 0.0372, 0.2795,
-0.1837, 0.0817],
[ 0.0925, 0.2875, -0.0036, 0.0543, -0.2413, 0.1087, -0.1652, 0.2277,
-0.1704, 0.1051]], grad_fn=<AddmmBackward0>)
2、顺序块
由nn.Sequential()可知,使用来把各个层串联起来,按顺序执行。为了构建我们自己的简化的MySequential
, 我们只需要定义两个关键函数
一种将块逐个追加到列表中的函数;
一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。
下面的MySequential
类提供了与默认Sequential
类相同的功能
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
# 变量_modules中。_module的类型是OrderedDict
self._modules[str(idx)] = module
def forward(self, X):
# OrderedDict保证了按照成员添加的顺序遍历它们
for block in self._modules.values():
X = block(X)
return X
_init__
函数将每个模块逐个添加到有序字典_modules
中。
当MySequential
的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。 现在可以使用我们的MySequential
类重新实现多层感知机
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)
输出:
tensor([[ 0.2218, 0.0042, 0.0106, -0.0558, -0.0460, -0.0934, 0.0432, -0.3199,
-0.0757, -0.1888],
[ 0.2224, 0.0671, -0.1113, -0.0928, -0.2197, -0.0530, 0.1175, -0.3031,
-0.0872, -0.2313]], grad_fn=<AddmmBackward0>)
3、前向传播函数中执行代码
计算函数f(X,W) = c * W^T * X的层, 其中X是输入, W是参数, c是某个在优化过程中没有更新的指定常量
import torch
from torch import nn
from torch.nn import functional as F
class MLP(nn.Module):
def __init__(self):
super().__init__()
# 不计算梯度的随机权重参数,其值不改变。
self.weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
# 调用全连接层
X = self.linear(X)
# relu激活函数
X = F.relu(torch.mm(X, self.rand_weight) + 1)
# 调用全连接层
X = self.linear(X)
# 循环:(L1范数)/2 <1 情况下停止
while X.abs().sum() > 1:
X /= 2
return X.sum()
net = MLP()
net(x)
输出:
tensor(0.1862, grad_fn=<SumBackward0>)
4、嵌套块
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
# 定义一个神经网络
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
nn.Linear(64, 32), nn.ReLU())
# 全连接层
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
X = torch.rand(2, 20)
nest = nn.Sequential(NestMLP(), nn.Linear(16, 20))
nest(X)
输出:
tensor([[-0.2697, -0.0260, -0.0634, 0.1692, 0.2619, -0.1160, -0.0063, -0.1191,
0.0698, 0.1779, 0.1207, 0.0356, -0.0878, -0.0384, 0.2148, -0.1182,
-0.0815, 0.0614, -0.3284, 0.2867],
[-0.2710, -0.0290, -0.0780, 0.1662, 0.2568, -0.1076, 0.0215, -0.1157,
0.0252, 0.1827, 0.1397, 0.0253, -0.0975, -0.0166, 0.1903, -0.1285,
-0.0818, 0.0637, -0.3168, 0.2923]], grad_fn=<AddmmBackward0>)
5. 小结
一个块可以由许多层组成;一个块可以由许多块组成。
块可以包含代码。
块负责大量的内部处理,包括参数初始化和反向传播。
层和块的顺序连接由Sequential
块处理。
二、参数
内容:
1. 访问参数,用于调试、诊断和可视化;
2. 参数初始化;
3. 在不同模型组件间共享参数
1、参数访问
state_dict是Python的字典对象,可用于保存模型参数,超参数以及优化器(torch.optim)的状态信息。
import torch
from torch import nn
# 多层感知机
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
print(net[2].state_dict())
输出:
OrderedDict([('weight', tensor([[-0.1755, 0.1619, 0.3391, 0.1680, 0.3493, -0.3377, 0.1417, 0.1347]])), ('bias', tensor([0.2775]))])
2、目标参数
查看偏置,权重
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
# 访问权重也是如此
# print(type(net[2].weight))
# print(net[2].weight)
# print(net[2].weight.data)
输出:
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([-0.0101], requires_grad=True)
tensor([-0.0101])
3、一次性访问所有参数
model.named_parameters()方法查看神经网络的参数信息。
print([(name, param.shape) for name, param in net[0].named_parameters()])
print([(name, param.shape) for name, param in net.named_parameters()])
输出:
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))
字典的键访问:
net.state_dict()['0.bias'].data
输出:
tensor([-0.4597, 0.1671, 0.3078, -0.3060, 0.2651, 0.3001, 0.2994, 0.3115])
4、嵌套块参数
1. 首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。
import torch
from torch import nn
def block1():
return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
nn.Linear(8, 4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(2):
# 嵌套
net.add_module(f'block {i}', block1())
return net
X = torch.rand(2, 4)
block_net = nn.Sequential(block2(), nn.Linear(4, 1))
block_net(X)
2.查看嵌套结构:
print(block_net)
输出:
Sequential(
(0): Sequential(
(block 0): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 1): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
)
(1): Linear(in_features=4, out_features=1, bias=True)
)
3. 访问第一个主要的块中、第二个子块的第一层的偏置项
block_net[0][1][0].bias.data
输出:
block_net[0][1][0].bias.data
5、参数初始化
1. 调用内置的初始化器
net = nn.Sequential(nn.Linear(2, 4))
X = torch.rand(4, 2)
def init_normal(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
输出:
(tensor([ 0.0159, -0.0039]), tensor(0.))
2. nn.init.constant_(m.weight, 1)将所有参数初始化为给定的常数,比如初始化为1
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(2, 4)
def init_constant(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 1)
nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
输出:
(tensor([1., 1., 1., 1.]), tensor(0.))
3. nn.init.xavier_uniform_(tensor, gain=1) 均匀分布 ~ U(−a,a)
X = torch.rand(2, 4)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
def init_xavier(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def init_42(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 42)
net[0].apply(init_42)
net[2].apply(init_xavier)
print(net[0].weight.data[0])
print(net[2].weight.data)
输出:
tensor([42., 42., 42., 42.])
tensor([[-0.4837, 0.7816, 0.4588, 0.6518, 0.5133, 0.4080, 0.8143, -0.1088]])
6. 参数绑定
1. 在多个层间共享参数: 我们可以定义多个层,然后使用它的参数来设置另一个层的参数
# 定义共享全连接层,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
shared, nn.ReLU(),
shared, nn.ReLU(),
nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
输出: 这个例子表明第三个和第五个神经网络层的参数是绑定的。
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])
三、自定义层
1、 不带参数的层
import torch
import torch.nn.functional as F
from torch import nn
class CenteredLayer(nn.Module):
def __init__(self):
super().__init__()
def forward(self, X):
return X - X.mean()
2、 带参数的层
1. 该层需要输入参数:in_units
和units
,分别表示输入数和输出数
class MyLinear(nn.Module):
def __init__(self, in_units, units):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_units, units))
self.bias = nn.Parameter(torch.randn(units,))
def forward(self, X):
linear = torch.matmul(X, self.weight.data) + self.bias.data
return F.relu(linear)
# 实例化MyLinear类
linear = MyLinear(5, 3)
linear.weight
访问其模型参数:
Parameter containing:
tensor([[-0.8684, 1.1125, -1.3112],
[ 2.0380, -1.2791, -0.9271],
[ 1.7444, 1.2732, 0.4618],
[ 1.8079, 1.1563, 0.5868],
[-1.2203, -0.5723, -1.4701]], requires_grad=True)
2. 使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
X = torch.rand(2, 64)
net(X)
输出:
tensor([[0.],
[0.]])
3.、小结
1. 我们可以通过基本层类设计自定义层
2. 在自定义层定义完成后,我们可以调用该自定义层
3. 层可以有局部参数,这些参数可以通过内置函数创建
四、读写文件
1、 加载和保存张量
1. 对于单个张量,我们可以直接调用load
和save
函数分别读写它们
torch.save(x, 'path') torch.load('path')
import torch
from torch import nn
from torch.nn import functional as F
x = torch.arange(4)
# 存储
torch.save(x, 'x-file')
# 加载
Y = torch.load('x-file')
2. 存储一个张量列表,然后把它们读回内存
y = torch.ones(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
3. 写入或读取从字符串映射到张量的字典
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
2、 加载和保存模型参数
1. 将模型的参数以字典的形式存储在一个叫做“mlp.params”的文件中。
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.output = nn.Linear(256, 10)
def forward(self, x):
return self.output(F.relu(self.hidden(x)))
net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)
torch.save(net.state_dict(), 'mlp.params')
2. 加载模型参数:为了恢复模型,我们实例化了原始多层感知机模型的一个备份
load_state_dict()
mlp1 = MLP()
mlp1.load_state_dict(torch.load('mlp.params'))
3. 加载后, 两个实例具有相同的模型参数
Y_clone = mlp1(X)
Y_clone == Y
输出:
tensor([[True, True, True, True, True, True, True, True, True, True],
[True, True, True, True, True, True, True, True, True, True]])
3. 小结
1. save
和load
函数可用于张量对象的文件读写
2. 我们可以通过参数字典保存和加载网络的全部参数
3. 保存架构必须在代码中完成,而不是在参数中完成