循环神经网络(RNN)是神经网络的一种。RNN将状态在自身网络中循环传递,可以接受时间序列结构输入。
1. 类型
- 一对一:固定的输入到输出,如图像分类
- 一对多:固定的输入到序列输出,如图像的文字描述
- 多对一:序列输入到输出,如情感分析,分类正面负面情绪
- 多对多:序列输入到序列的输出,如机器翻译,称之为编解码网络
- 同步多对多:同步序列输入到同步输出,如文本生成,视频每一帧的分类,也称之为序列生成
2. 基础循环网络介绍
: 表示每一个时刻的输入
: 表示每一个时刻的输出
: 表示每一个隐层的输出
- 中间的小圆圈代表隐藏层的一个unit(单元)
- 所有单元的参数共享
通用公式表示:
:表示激活函数
3. 困惑度
- 衡量一个语言模型的好坏可以用平均交叉熵
- p是语言模型的预测概率,
是真实词
-
在最好的情况下,模型总是完美地估计标签词元的概率为1。 在这种情况下,模型的困惑度为1。
-
在最坏的情况下,模型总是预测标签词元的概率为0。 在这种情况下,困惑度是正无穷大。
4. 总结
-
对隐状态使用循环计算的神经网络称为循环神经网络(RNN)。
-
循环神经网络的隐状态可以捕获直到当前时间步序列的历史信息。
-
循环神经网络模型的参数数量不会随着时间步的增加而增加。
-
我们可以使用循环神经网络创建字符级语言模型。
-
我们可以使用困惑度来评价语言模型的质量。
5. 循环神经网络简洁实现
5.1 数据加载
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
# 自定义函数
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
5.2 定义模型
构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer。
# 隐藏单元数目
num_hiddens = 256
# len(vaocab)决定输出输出数量
rnn_layer = nn.RNN(len(vocab), num_hiddens)
使用张量来初始化隐状态,它的形状是(隐藏层数,批量大小,隐藏单元数)
state = torch.zeros((1, batch_size, num_hiddens))
通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。
X = torch.rand(size=(num_steps, batch_size, len(vocab)))
# 返回当前时刻的Y和state
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape
为一个完整的循环神经网络模型定义了一个RNNModel
类。
#@save
class RNNModel(nn.Module):
"""循环神经网络模型"""
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
# 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
if not self.rnn.bidirectional:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
def forward(self, inputs, state):
X = F.one_hot(inputs.T.long(), self.vocab_size)
X = X.to(torch.float32)
Y, state = self.rnn(X, state)
# 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
# 它的输出形状是(时间步数*批量大小,词表大小)。
output = self.linear(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, device, batch_size=1):
if not isinstance(self.rnn, nn.LSTM):
# nn.GRU以张量作为隐状态
return torch.zeros((self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens),
device=device)
else:
# nn.LSTM以元组作为隐状态
return (torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device),
torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device))
5.3 训练与预测
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)
输出: 这种模型根本不能输出好的结果
'time travellerbbebbevbbe'
用定义的超参数调用train_ch8
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
输出:
perplexity 1.3, 103334.1 tokens/sec on cpu
time traveller came back andfilby s aneche oncell on the fire wi
travelleryou can show blad for an aromates if it entthew is
困惑度: