循环神经网络

本文介绍了循环神经网络的基本概念,包括一对一到多对多的不同类型,以及如何构建和训练循环神经网络模型,如使用困惑度评估语言模型性能。以PyTorch为例,展示了如何实现一个简单的RNN模型并进行训练和预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        循环神经网络(RNN)是神经网络的一种。RNN将状态在自身网络中循环传递,可以接受时间序列结构输入。

1. 类型

  • 一对一:固定的输入到输出,如图像分类
  • 一对多:固定的输入到序列输出,如图像的文字描述
  • 多对一:序列输入到输出,如情感分析,分类正面负面情绪
  • 多对多:序列输入到序列的输出,如机器翻译,称之为编解码网络
  • 同步多对多:同步序列输入到同步输出,如文本生成,视频每一帧的分类,也称之为序列生成

2. 基础循环网络介绍

 

 

  • \mathbf{x_{t}}: 表示每一个时刻的输入
  • \mathbf{o_{t}}​​: 表示每一个时刻的输出
  • \mathbf{s_{t}}​​: 表示每一个隐层的输出
  • 中间的小圆圈代表隐藏层的一个unit(单元)
  • 所有单元的参数共享

通用公式表示:

  • \mathbf{s_{0}=0}
  • \mathbf{s_{t} = g_{1}(U*x_{t}+W*s_{t-1}+b_{a})}
  • \mathbf{o_{t} = g_{2}(V*s_{t} + b_{y})}

    \mathbf{g_{1},g_{2}}:表示激活函数

3. 困惑度

  • 衡量一个语言模型的好坏可以用平均交叉熵  \mathbf{\pi =\frac{1}{n}\sum_{i=1}^{n}-logp(x_{t}|x_{t-1}, ...)}              
  • p是语言模型的预测概率,\mathbf{x_{t}}是真实词
  • 在最好的情况下,模型总是完美地估计标签词元的概率为1。 在这种情况下,模型的困惑度为1。

  • 在最坏的情况下,模型总是预测标签词元的概率为0。 在这种情况下,困惑度是正无穷大。

4. 总结

  • 对隐状态使用循环计算的神经网络称为循环神经网络(RNN)。

  • 循环神经网络的隐状态可以捕获直到当前时间步序列的历史信息。

  • 循环神经网络模型的参数数量不会随着时间步的增加而增加。

  • 我们可以使用循环神经网络创建字符级语言模型。

  • 我们可以使用困惑度来评价语言模型的质量。

5. 循环神经网络简洁实现

5.1 数据加载
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35
# 自定义函数
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
 5.2 定义模型

        构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer

# 隐藏单元数目
num_hiddens = 256
# len(vaocab)决定输出输出数量
rnn_layer = nn.RNN(len(vocab), num_hiddens)

        使用张量来初始化隐状态,它的形状是(隐藏层数,批量大小,隐藏单元数)

state = torch.zeros((1, batch_size, num_hiddens))

        通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。

X = torch.rand(size=(num_steps, batch_size, len(vocab)))
# 返回当前时刻的Y和state
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape

         为一个完整的循环神经网络模型定义了一个RNNModel类。

#@save
class RNNModel(nn.Module):
    """循环神经网络模型"""
    def __init__(self, rnn_layer, vocab_size, **kwargs):
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)

    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        Y, state = self.rnn(X, state)
        # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
        # 它的输出形状是(时间步数*批量大小,词表大小)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state

    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                                 batch_size, self.num_hiddens),
                                device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))

 

5.3  训练与预测
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)

        输出: 这种模型根本不能输出好的结果

'time travellerbbebbevbbe'

         用定义的超参数调用train_ch8

num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)

        输出:

perplexity 1.3, 103334.1 tokens/sec on cpu
time traveller came back andfilby s aneche oncell on the fire wi
travelleryou can show blad for an aromates if it entthew is

         困惑度:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值