泰勒展开基本原理,三角函数、指数函数的泰勒展开表达式

基本原理

  给定函数 f(x)f(x)f(x),用 nnn 阶多项式 p(x)p\left( x \right)p(x)x=x0x=x_0x=x0 邻域内,拟合该函数 f(x)f(x)f(x)。将 p(x)p\left( x \right)p(x) 表示为一般形式:
p(x)=a0+a1(x−x0)+a2(x−x0)2+...+an(x−x0)np\left( x \right) = {a_0} + {a_1}\left( {x - {x_0}} \right) + {a_2}{\left( {x - {x_0}} \right)^2} + ... + {a_n}{\left( {x - {x_0}} \right)^n}p(x)=a0+a1(xx0)+a2(xx0)2+...+an(xx0)n

  设置p(x)p\left( x \right)p(x)f(x)f\left( x \right)f(x)的前 nnn 阶导数在 x=x0x=x_0x=x0 处相等,从而求解系数 a0,a1,a2,...,ana_0,a_1,a_2,...,a_na0,a1,a2,...,an,如下所示:
{ p(x0)=f(x0)p′(x0)=f′(x0)p′′(x0)=f′′(x0)⋮p(n)(x0)=f(n)(x0)→{ a0=f(x0)a1=f′(x0)1!a2=f′′(x0)2!⋮an=f(n)(x0)n!\left\{ {\begin{array}{c} {p\left( { {x_0}} \right) = f\left( { {x_0}} \right)}\\ {p'\left( { {x_0}} \right) = f'\left( { {x_0}} \right)}\\ {p''\left( { {x_0}} \right) = f''\left( { {x_0}} \right)}\\ \vdots \\ { {p^{\left( n \right)}}\left( { {x_0}} \right) = {f^{\left( n \right)}}\left( { {x_0}} \right)} \end{array}} \right. \to \left\{ {\begin{array}{c} { {a_0} = f\left( { {x_0}} \right)}\\ { {a_1} = \frac{ {f'\left( { {x_0}} \right)}}{ {1!}}}\\ { {a_2} = \frac{ {f''\left( { {x_0}} \right)}}{ {2!}}}\\ \vdots \\ { {a_n} = \frac{ { {f^{\left( n \right)}}\left( { {x_0}} \right)}}{ {n!}}} \end{array}} \right. p(x0)=f(x0)p(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值