Engineering Dynamics 1 --- 牛顿力学

本文深入探讨动力学在控制系统中的应用,介绍MIT工程动力学课程精华,涵盖经典弹簧阻尼模型解析,粒子运动方程推导,及牛顿力学在惯性和非惯性坐标系下的应用。文章详细解释了科里奥利力、离心力的概念及其在非惯性系中的作用,同时分析了作用力与反作用力定律在复杂系统中的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 Introduction

1.1 背景

动力学是控制系统的基础,这个系列基于MIT engineering dynamics 课程[1], 并结合其他仿真软件,用笔记的形式记录学习过程。

1.2 解决问题的过程

解决动力学问题的过程是一个认识对象(plant)的过程,而认识对象往往是一个主观能动的过程。
在这里插入图片描述

1.2.1 model

建模的方法有 理 论 推 导 和 经 验 数 据 \color{red}{理论推导和经验数据} ,这个课程主要强调的是从理论推导得到模型。
对于一个经典的弹簧阻尼模型,如下。
在这里插入图片描述

  • step1: Describe motion
    在这里插入图片描述
  • step2: Apply physics
    主要的两种方法:
    1)牛顿-欧拉直接法;
    2)拉格朗日能量法;
    这里采用方法1),并使用free body digram。
    在这里插入图片描述
    ∑ x F e x t = m g − k x − k x ˙ = m x ¨ \sum_x F_{ext}=mg-kx-k\dot{x}=m\ddot{x} xFext=mgkxkx˙=mx¨
  • step3: Apply math
    用差分方程计算。

1.3 课程体系

MIT的这个课程,通过将历史上的主要几个物理学家的贡献逐步引入,逐渐将动力学系统建模的工具完善。

2 粒子的运动方程

2.1 笛卡尔坐标系

某种角度来讲,空间和时间是相对的。所以需要根据问题,找到一个零点,作为空间的原点;找到一个时刻,作为时间的原点。

  • 惯性坐标系0XYZ
    R ⃗ B / O = R B X I ^ + R B Y J ^ + R B Z K ^ v ⃗ B / O = R ˙ B X I ^ + R ˙ B Y J ^ + R ˙ B Z K ^ a ⃗ B / O = R ¨ B X I ^ + R ¨ B Y J ^ + R ¨ B Z K ^ \begin{aligned} \vec{R}_{B/O} & = R_{BX}\hat{I}+R_{BY}\hat{J}+R_{BZ}\hat{K}\\ \vec{v}_{B/O} & = \dot{R}_{BX}\hat{I}+\dot{R}_{BY}\hat{J}+\dot{R}_{BZ}\hat{K}\\ \vec{a}_{B/O} & = \ddot{R}_{BX}\hat{I}+\ddot{R}_{BY}\hat{J}+\ddot{R}_{BZ}\hat{K} \end{aligned} R B/Ov B/Oa B/O=RBXI^+RBYJ^+RBZK^=R˙BXI^+R˙BYJ^+R˙BZK^=R¨BXI^+R¨BYJ^+R¨BZK^

在这里插入图片描述

  • 非惯性坐标系Axyz
    R ⃗ B / O = R ⃗ A / O + R ⃗ B / A v ⃗ B / O = v ⃗ A / O + v ⃗ B / A ∣ w A / O = 0 + w ⃗ A / O × R ⃗ B / A ∣ w A / O = w a ⃗ B / O = a ⃗ A / O + a ⃗ B / A + 2 w ⃗ A / O × v ⃗ B / A − w ⃗ A / O × ( w ⃗ A / O × R ⃗ B / A ) + α ⃗ × R ⃗ B / A \begin{aligned} \vec{R}_{B/O} & = \vec{R}_{A/O}+\vec{R}_{B/A} \\ \vec{v}_{B/O} & = \vec{v}_{A/O}+\vec{v}_{B/A}\bigg|_{w_{A/O} = 0}+\vec{w}_{A/O}\times \vec{R}_{B/A}\bigg|_{w_{A/O}=w} \\ \vec{a}_{B/O} & = \vec{a}_{A/O}+\vec{a}_{B/A}+2\vec{w}_{A/O}\times \vec{v}_{B/A}\\ & -\vec{w}_{A/O}\times (\vec{w}_{A/O}\times \vec{R}_{B/A})+\vec{\alpha}\times \vec{R}_{B/A} \end{aligned} R B/Ov B/Oa B/O=R A/O+R B/A=v A/O+v B/AwA/O=0+w A/O×R B/AwA/O=w=a A/O+a B/A+2w A/O×v B/Aw A/O×(w A/O×R B/A)+α ×R B/A

在这里插入图片描述
下面开始推导非惯性系下粒子的运动方程。
假定这里的A是一个圆盘,B是圆盘上的一个粒子。
B的全局坐标系可以表示为:
[ R B X R B Y R B Z ] = [ R A X R A Y R A Z ] + [ s i n ( θ ) − c o s ( θ ) 0 c o s ( θ ) s i n ( θ ) 0 0 0 1 ] [ R B x ′ R B y ′ R B z ′ ] \begin{bmatrix} R_{BX} \\ R_{BY} \\ R_{BZ} \end{bmatrix} = \begin{bmatrix} R_{AX} \\ R_{AY} \\ R_{AZ} \end{bmatrix} + \begin{bmatrix} sin(\theta) & -cos(\theta) & 0 \\ cos(\theta) & sin(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{Bx'} \\ R_{By'} \\ R_{Bz'} \end{bmatrix} RBXRBYRBZ=RAXRAYRAZ+sin(θ)cos(θ)0cos(θ)sin(θ)0001RBxRByRBz
用向量描述为:
R B / O = R A / 0 + R O T A T E A / O ∗ R B / A R_{B/O}=R_{A/0}+ROTATE_{A/O}*R_{B/A} RB/O=RA/0+ROTATEA/ORB/A
观察B的速度
[ v B X v B Y v B Z ] = [ v A X v A Y v A Z ] + [ s i n ( θ ) − c o s ( θ ) 0 c o s ( θ ) s i n ( θ ) 0 0 0 1 ] [ v B x ′ v B y ′ v B z ′ ] + θ ˙ [ c o s ( θ ) − s i n ( θ ) 0 − s i n ( θ ) c o s ( θ ) 0 0 0 1 ] [ R B x ′ R B y ′ R B z ′ ] \begin{bmatrix} v_{BX} \\ v_{BY} \\ v_{BZ} \end{bmatrix} = \begin{bmatrix} v_{AX} \\ v_{AY} \\ v_{AZ} \end{bmatrix} + \begin{bmatrix} sin(\theta) & -cos(\theta) & 0 \\ cos(\theta) & sin(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{Bx'} \\ v_{By'} \\ v_{Bz'} \end{bmatrix} + \dot{\theta}\begin{bmatrix} cos(\theta) & -sin(\theta) & 0 \\ -sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{Bx'} \\ R_{By'} \\ R_{Bz'} \end{bmatrix} vBXvBYvBZ=vAXvAYvAZ+sin(θ)cos(θ)0cos(θ)sin(θ)0001vBxvByvBz+θ˙cos(θ)sin(θ)0sin(θ)cos(θ)0001RBxRByRBz
用向量描述
v ‾ B / O = v ‾ A / O + v ‾ B / A + θ ˙ ∗ R B / A j ^ \overline{v}_{B/O}=\overline{v}_{A/O}+\overline{v}_{B/A}+\dot{\theta}*R_{B/A}\hat{j} vB/O=vA/O+vB/A+θ˙RB/Aj^
从 叠 加 原 理 的 角 度 理 解 , 上 面 可 以 理 解 成 \color{red}{从叠加原理的角度理解,上面可以理解成} 。先假定B点没有和A的相对运动,则B点的速度为A点的速度+线速度;再叠加B点和A的相对速度。用公式表示则为:
v ‾ B / O = v ‾ A / O + v ‾ B / A ∣ θ ˙ = 0 + w B / O R B / A j ^ ∣ θ ˙ = w \overline{v}_{B/O}=\overline{v}_{A/O}+\overline{v}_{B/A}\bigg|_{\dot{\theta} = 0}+w_{B/O}R_{B/A}\hat{j}\bigg|_{\dot{\theta}=w} vB/O=vA/O+vB/Aθ˙=0+wB/ORB/Aj^θ˙=w
观察B的加速度
[ a B X a B Y a B Z ] = [ a A X a A Y a A Z ] + [ s i n ( θ ) − c o s ( θ ) 0 c o s ( θ ) s i n ( θ ) 0 0 0 1 ] [ a B x ′ a B y ′ a B z ′ ] + θ ˙ [ c o s ( θ ) s i n ( θ ) 0 − s i n ( θ ) c o s ( θ ) 0 0 0 1 ] [ v B x ′ v B y ′ v B z ′ ] + θ ˙ [ c o s ( θ ) s i n ( θ ) 0 − s i n ( θ ) c o s ( θ ) 0 0 0 1 ] [ v B x ′ v B y ′ v B z ′ ] + θ ¨ [ c o s ( θ ) s i n ( θ ) 0 − s i n ( θ ) c o s ( θ ) 0 0 0 1 ] [ R B x ′ R B y ′ R B z ′ ] − θ ˙ 2 [ s i n ( θ ) − c o s ( θ ) 0 c o s ( θ ) s i n ( θ ) 0 0 0 1 ] [ R B x ′ R B y ′ R B z ′ ] \begin{bmatrix} a_{BX} \\ a_{BY} \\ a_{BZ} \end{bmatrix} = \begin{bmatrix} a_{AX} \\ a_{AY} \\ a_{AZ} \end{bmatrix} + \begin{bmatrix} sin(\theta) & -cos(\theta) & 0 \\ cos(\theta) & sin(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{Bx'} \\ a_{By'} \\ a_{Bz'} \end{bmatrix} + \dot{\theta}\begin{bmatrix} cos(\theta) & sin(\theta) & 0 \\ -sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{Bx'} \\ v_{By'} \\ v_{Bz'} \end{bmatrix} + \\ \dot{\theta}\begin{bmatrix} cos(\theta) & sin(\theta) & 0 \\ -sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{Bx'} \\ v_{By'} \\ v_{Bz'} \end{bmatrix}+ \ddot{\theta}\begin{bmatrix} cos(\theta) & sin(\theta) & 0 \\ -sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{Bx'} \\ R_{By'} \\ R_{Bz'} \end{bmatrix}- \dot{\theta}^2\begin{bmatrix} sin(\theta) & -cos(\theta) & 0 \\ cos(\theta) & sin(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{Bx'} \\ R_{By'} \\ R_{Bz'} \end{bmatrix} aBXaBYaBZ=aAXaAYaAZ+sin(θ)cos(θ)0cos(θ)sin(θ)0001aBxaByaBz+θ˙cos(θ)sin(θ)0sin(θ)cos(θ)0001vBxvByvBz+θ˙cos(θ)sin(θ)0sin(θ)cos(θ)0001vBxvByvBz+θ¨cos(θ)sin(θ)0sin(θ)cos(θ)0001RBxRByRBzθ˙2sin(θ)cos(θ)0cos(θ)sin(θ)0001RBxRByRBz
用向量表示:
a ‾ B / O = a ‾ A / O + a ‾ B / A + 2 θ ˙ v B / A j ^ + θ ¨ R B / A j ^ − θ ˙ 2 R B / A i ^ \begin{aligned} \overline{a}_{B/O} &=\overline{a}_{A/O}+\overline{a}_{B/A}+2\dot{\theta}v_{B/A}\hat{j}+\\ & \ddot{\theta}R_{B/A}\hat{j}-\dot{\theta}^2R_{B/A}\hat{i} \end{aligned} aB/O=aA/O+aB/A+2θ˙vB/Aj^+θ¨RB/Aj^θ˙2RB/Ai^
上 面 可 以 理 解 成 \color{red}{上面可以理解成}
a ‾ B / O = a ‾ A / O + a ‾ B / A + 科 氏 加 速 度 + 角 加 速 度 + 离 心 加 速 度 \overline{a}_{B/O} =\overline{a}_{A/O}+\overline{a}_{B/A}+科氏加速度+ 角加速度+离心加速度 aB/O=aA/O+aB/A+++
当物体A发生旋转时,坐标系Axyz’不再是惯性坐标系,但是牛顿力学是建立在惯性坐标系下的。所以引入虚拟的科里奥利力抵消科氏角速度的影响,引入离心加速度抵消离心加速度的影响。引入这两个虚拟力,就仍然将坐标系Axyz’当成惯性坐标系。

2.2 圆柱坐标系

物体B在圆柱坐标系下可以表示为 ( θ , β , z ) (\theta, \beta, z) (θ,β,z),和笛卡尔坐标系的转换关系为:
R B X = R c o s ( θ ) R B Y = R s i n ( θ ) R B Z = z \begin{aligned} R_{BX}&=Rcos(\theta) \\ R_{BY}&=Rsin(\theta) \\ R_{BZ}&=z \end{aligned} RBXRBYRBZ=Rcos(θ)=Rsin(θ)=z

在这里插入图片描述
不同于笛卡尔坐标系下的坐标系单位方向向量 x ⃗ , y ⃗ , z ⃗ \vec{x}, \vec{y}, \vec{z} x ,y ,z 不随时间变化,圆柱坐标系的单位向量 R ⃗ , θ ⃗ \vec{R}, \vec{\theta} R ,θ 是随着时间变化的。

  • 计算 R ^ ˙ \dot{\hat{R}} R^˙
    R ^ ˙ \dot{\hat{R}} R^˙表示 R ⃗ \vec{R} R 单位方向向量的导数, R ^ 1 , R ^ 2 \hat{R}_1,\hat{R}_2 R^1,R^2 R ⃗ 1 , R ⃗ 2 \vec{R}_1,\vec{R}_2 R 1,R 2的单位方向向量。
    在这里插入图片描述

根据上图,有
δ R = R ^ ˙ Δ t = Δ θ ⃗ × R ^ \delta R = \dot{\hat{R}}\Delta t=\Delta \vec{\theta} \times \hat{R} δR=R^˙Δt=Δθ ×R^
容易得到 R ⃗ ˙ \dot{\vec{R}} R ˙
R ⃗ ˙ = Δ θ ⃗ Δ t × R ^ = θ ˙ k ^ × R ^ = θ ˙ θ ^ \dot{\vec{R}}=\frac{\Delta \vec{\theta}}{\Delta t}\times \hat{R}=\dot{\theta}\hat{k} \times \hat{R}=\dot{\theta}\hat{\theta} R ˙=ΔtΔθ ×R^=θ˙k^×R^=θ˙θ^

  • 计算 θ ^ ˙ \dot{\hat{\theta}} θ^˙
    θ ^ ˙ \dot{\hat{\theta}} θ^˙表示 θ ⃗ \vec{\theta} θ 的单位方向向量的导数, θ ^ 1 , θ ^ 2 \hat{\theta}_1,\hat{\theta}_2 θ^1,θ^2的方向如下图。
    在这里插入图片描述

根据上图,其中 s i n ( Δ θ ) = Δ θ sin(\Delta \theta)=\Delta \theta sin(Δθ)=Δθ
δ θ = θ ^ ˙ Δ t = 2 s i n ( Δ θ 2 ) k ^ × θ ^ = − θ ˙ Δ t R ^ \delta \theta=\dot{\hat{\theta}}\Delta t=2sin(\frac{\Delta \theta}{2})\hat{k}\times \hat{\theta}=-\dot{\theta}\Delta t\hat{R} δθ=θ^˙Δt=2sin(2Δθ)k^×θ^=θ˙ΔtR^
所以, θ ^ ˙ = − θ ˙ R ^ \dot{\hat{\theta}}=-\dot{\theta}\hat{R} θ^˙=θ˙R^

  • 圆柱坐标系下的运动方程
    B的位置:
    R B / O = R A / O + R B / A R ^ + z B / A k ^ R_{B/O}=R_{A/O}+R_{B/A}\hat{R}+z_{B/A}\hat{k} RB/O=RA/O+RB/AR^+zB/Ak^
    B的速度:
    v B / O = v A / O + R ˙ B / A R ^ + R B / A R ^ ˙ + z ˙ B / A k ^ = v A / O + R ˙ B / A R ^ + R B / A θ ˙ θ ^ + z ˙ B / A k ^ \begin{aligned} v_{B/O} & =v_{A/O}+\dot{R}_{B/A}\hat{R}+R_{B/A}\dot{\hat{R}}+\dot{z}_{B/A}\hat{k} \\ & =v_{A/O}+\dot{R}_{B/A}\hat{R}+R_{B/A}\dot{\theta}\hat{\theta}+\dot{z}_{B/A}\hat{k} \end{aligned} vB/O=vA/O+R˙B/AR^+RB/AR^˙+z˙B/Ak^=vA/O+R˙B/AR^+RB/Aθ˙θ^+z˙B/Ak^
    B的加速度:
    a B / O = a A / O + z ¨ B / A k ^ + R ¨ B / A R ^ + R ˙ B / A θ ˙ θ ^ + R ˙ B / A θ ˙ θ ^ + R B / A θ ¨ θ ^ − R B / A θ ˙ 2 R ^ \begin{aligned} a_{B/O}=a_{A/O}+\ddot{z}_{B/A}\hat{k}+\ddot{R}_{B/A}\hat{R}+\dot{R}_{B/A}\dot{\theta}\hat{\theta}+\\ \dot{R}_{B/A}\dot{\theta}\hat{\theta}+R_{B/A}\ddot{\theta}\hat{\theta}-R_{B/A}\dot{\theta}^2\hat{R} \end{aligned} aB/O=aA/O+z¨B/Ak^+R¨B/AR^+R˙B/Aθ˙θ^+R˙B/Aθ˙θ^+RB/Aθ¨θ^RB/Aθ˙2R^
    通过圆柱坐标系和笛卡尔坐标系,都得出了B在全局坐标系下的位置,速度和加速度。

3 牛顿力学

牛顿力学解决物体受力和运动的联系,物体受力可以看成是外界环境对物体的输入,物体的运动状态(x,v,a)是状态变量。

3.1 惯性定律

惯性定律一个重要的作用就是判定,当前坐标系是否是惯性坐标系。
判断的方式:例如A在做旋转运动,判断坐标系Axyz‘是否是惯性坐标系。如果A跟着圆盘一起旋转,此时人假想在圆盘上放置一个微粒,如果微粒没有加速度,则为惯性系。
判断结果:显然在这样的系统里,粒子会马上飞走,Axyz’不是惯性坐标系。
在这里插入图片描述

3.2 F=ma

3.2.1 惯性坐标系

牛顿力学是基于惯性坐标系,如果判定选定的坐标系是惯性坐标系,直接套用公式。

3.2.2 非惯性坐标系

非惯性坐标系,可以通过虚拟力,同样可以将非惯性坐标系看成惯性坐标系。

  • 离心力1
    在这里插入图片描述

    • step1 首先确定坐标系
      因为是旋转运动,采用cylinder coordinate ( R ^ , θ ^ \hat{R},\hat{\theta} R^,θ^)。整个坐标系统的运动情况如上图。
    • step2 描述B点的运动
      B点的速度
      v ‾ B / O = v ‾ A / O + Ω R θ ^ \overline{v}_{B/O}=\overline{v}_{A/O}+\Omega R \hat{\theta} vB/O=vA/O+ΩRθ^
      B点的加速度
      a ‾ B / O = a ‾ A / O − Ω 2 R R ^ \overline{a}_{B/O}=\overline{a}_{A/O}-\Omega^2 R \hat{R} aB/O=aA/OΩ2RR^
    • step3 free body diagram
      绳子的拉力Ft使得物体B产生了加速度。
      从 惯 性 系 的 角 度 理 解 : \color{red}{从惯性系的角度理解:}
      B球的受力如上图,如果在一个惯性系下,那么球应该往接近A的方向运动,但是实际上,并没有。
      在这里插入图片描述
      所以为了能在惯性系上研究这个问题,根据离心加速度,虚拟出一个离心力Fc,和Ft受力平衡了。
  • 离心力2
    在这里插入图片描述

    • step1 确定坐标系
      如果以全局坐标系o,去研究B点的运动,就没有办法利用轨迹的信息了。这里仍然采用cylinder coordinate,根据轨迹建立局部坐标系。
    • step2 描述B的运动
      v ‾ B / O = v ‾ A / O + w R θ ^ \overline{v}_{B/O}=\overline{v}_{A/O}+wR\hat{\theta} vB/O=vA/O+wRθ^
      a ‾ B / O = a ‾ A / O + a B / A θ ^ − v 2 ρ R ^ \overline{a}_{B/O}=\overline{a}_{A/O}+a_{B/A}\hat{\theta}-\frac{v^2}{\rho}\hat{R} aB/O=aA/O+aB/Aθ^ρv2R^
    • step3 描述B的受力free body diagram
      在这里插入图片描述
  • 科里奥利力1
    在这里插入图片描述

    • step1 建立坐标系
      这里坐标系比较明显,采用cylinder coordination.
    • step2 描述B的运动
      v ‾ B / O = v ‾ A / O + θ ˙ R B / A θ ^ + R ˙ B / A R ^ \overline{v}_{B/O}=\overline{v}_{A/O}+\dot{\theta}R_{B/A}\hat{\theta}+\dot{R}_{B/A}\hat{R} vB/O=vA/O+θ˙RB/Aθ^+R˙B/AR^
      a ‾ B / O = a ‾ A / O + ( θ ¨ R + 2 R ˙ θ ˙ ) θ ^ + ( R ¨ − θ ˙ 2 R ) R ^ = a ‾ A / O + ( θ ¨ R + 2 R ˙ θ ˙ ) θ ^ + ( − θ ˙ 2 R ) R ^ \begin{aligned} \overline{a}_{B/O} &=\overline{a}_{A/O}+(\ddot{\theta}R+2\dot{R}\dot{\theta})\hat{\theta}+(\ddot{R}-\dot{\theta}^2R)\hat{R} \\ &=\overline{a}_{A/O}+(\ddot{\theta}R+2\dot{R}\dot{\theta})\hat{\theta}+(-\dot{\theta}^2R)\hat{R} \end{aligned} aB/O=aA/O+(θ¨R+2R˙θ˙)θ^+(R¨θ˙2R)R^=aA/O+(θ¨R+2R˙θ˙)θ^+(θ˙2R)R^
    • step3 B的受力情况free body diagram
      在这里插入图片描述
      计 算 出 来 的 离 心 加 速 度 是 − R ^ 方 向 的 , 但 是 实 际 上 的 B 在 R ^ 的 方 向 上 速 度 越 来 越 大 。 \color{red}{计算出来的离心加速度是-\hat{R}方向的,但是实际上的B在\hat{R}的方向上速度越来越大。} R^BR^
      这个从惯性系上根本无法理解,此时引入虚拟的离心力Fc,这些问题就解决了。
      所以对于离心加速度和科氏加速度最好将他们看成对应的虚拟力Fc和F,不要当成惯性系中的加速度去理解。
  • 科里奥利力2
    在这里插入图片描述
    某人坐在一个匀速旋转的圆盘上,某一时刻,将手上的球B放开,假定球和圆盘的摩擦力忽略不计。
    这里没有任何外力,只有虚拟的科里奥利力和离心力,所以在坐标系Axyz’上去计算球B的运动并不容易。因为B不受外力,将B放在全局坐标系O上,研究反而最简单。

3.3 作用力与反作用力

第一定律和第二定律只能研究单个粒子的运动,物体在现实世界中的运动,需要在一定的track上,受到一些约束。
如果是下面这样的平移运动问题,一个车厢中塞满了货物,车厢受到牵引力F。
在这里插入图片描述
每个物体的受力如下图,
F ⃗ i = ∑ F ⃗ i i n + ∑ F ⃗ i e x t = m i a i \vec{F}_i=\sum \vec{F}_i^{in}+\sum \vec{F}_i^{ext}=m_ia_i F i=F iin+F iext=miai
因为外界环境的限制,所有个体的加速度都是一致的,又因为牛顿第三定律,内力互相抵消。
∑ m i a = ∑ F ⃗ i = F ⃗ i e x t \sum m_ia=\sum \vec{F}_i=\vec{F}_i^{ext} mia=F i=F iext
对 于 平 移 运 动 , 即 使 是 不 能 看 成 质 点 的 物 体 , 也 是 可 以 直 接 使 用 牛 顿 力 学 的 。 \color{red}{对于平移运动,即使是不能看成质点的物体,也是可以直接使用牛顿力学的。} 使使
在这里插入图片描述
如 果 是 旋 转 运 动 , 牛 顿 的 力 学 就 产 生 解 决 不 了 , 欧 拉 填 补 了 这 块 的 空 白 。 \color{blue}{如果是旋转运动,牛顿的力学就产生解决不了,欧拉填补了这块的空白。}

References

[1] https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-fall-2011/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值