1 Introduction
1.1 背景
动力学是控制系统的基础,这个系列基于MIT engineering dynamics 课程[1], 并结合其他仿真软件,用笔记的形式记录学习过程。
1.2 解决问题的过程
解决动力学问题的过程是一个认识对象(plant)的过程,而认识对象往往是一个主观能动的过程。
1.2.1 model
建模的方法有
理
论
推
导
和
经
验
数
据
\color{red}{理论推导和经验数据}
理论推导和经验数据,这个课程主要强调的是从理论推导得到模型。
对于一个经典的弹簧阻尼模型,如下。
- step1: Describe motion
- step2: Apply physics
主要的两种方法:
1)牛顿-欧拉直接法;
2)拉格朗日能量法;
这里采用方法1),并使用free body digram。
∑ x F e x t = m g − k x − k x ˙ = m x ¨ \sum_x F_{ext}=mg-kx-k\dot{x}=m\ddot{x} x∑Fext=mg−kx−kx˙=mx¨ - step3: Apply math
用差分方程计算。
1.3 课程体系
MIT的这个课程,通过将历史上的主要几个物理学家的贡献逐步引入,逐渐将动力学系统建模的工具完善。
2 粒子的运动方程
2.1 笛卡尔坐标系
某种角度来讲,空间和时间是相对的。所以需要根据问题,找到一个零点,作为空间的原点;找到一个时刻,作为时间的原点。
- 惯性坐标系0XYZ
R ⃗ B / O = R B X I ^ + R B Y J ^ + R B Z K ^ v ⃗ B / O = R ˙ B X I ^ + R ˙ B Y J ^ + R ˙ B Z K ^ a ⃗ B / O = R ¨ B X I ^ + R ¨ B Y J ^ + R ¨ B Z K ^ \begin{aligned} \vec{R}_{B/O} & = R_{BX}\hat{I}+R_{BY}\hat{J}+R_{BZ}\hat{K}\\ \vec{v}_{B/O} & = \dot{R}_{BX}\hat{I}+\dot{R}_{BY}\hat{J}+\dot{R}_{BZ}\hat{K}\\ \vec{a}_{B/O} & = \ddot{R}_{BX}\hat{I}+\ddot{R}_{BY}\hat{J}+\ddot{R}_{BZ}\hat{K} \end{aligned} RB/OvB/OaB/O=RBXI^+RBYJ^+RBZK^=R˙BXI^+R˙BYJ^+R˙BZK^=R¨BXI^+R¨BYJ^+R¨BZK^
- 非惯性坐标系Axyz
R ⃗ B / O = R ⃗ A / O + R ⃗ B / A v ⃗ B / O = v ⃗ A / O + v ⃗ B / A ∣ w A / O = 0 + w ⃗ A / O × R ⃗ B / A ∣ w A / O = w a ⃗ B / O = a ⃗ A / O + a ⃗ B / A + 2 w ⃗ A / O × v ⃗ B / A − w ⃗ A / O × ( w ⃗ A / O × R ⃗ B / A ) + α ⃗ × R ⃗ B / A \begin{aligned} \vec{R}_{B/O} & = \vec{R}_{A/O}+\vec{R}_{B/A} \\ \vec{v}_{B/O} & = \vec{v}_{A/O}+\vec{v}_{B/A}\bigg|_{w_{A/O} = 0}+\vec{w}_{A/O}\times \vec{R}_{B/A}\bigg|_{w_{A/O}=w} \\ \vec{a}_{B/O} & = \vec{a}_{A/O}+\vec{a}_{B/A}+2\vec{w}_{A/O}\times \vec{v}_{B/A}\\ & -\vec{w}_{A/O}\times (\vec{w}_{A/O}\times \vec{R}_{B/A})+\vec{\alpha}\times \vec{R}_{B/A} \end{aligned} RB/OvB/OaB/O=RA/O+RB/A=vA/O+vB/A∣∣∣∣wA/O=0+wA/O×RB/A∣∣∣∣wA/O=w=aA/O+aB/A+2wA/O×vB/A−wA/O×(wA/O×RB/A)+α×RB/A
下面开始推导非惯性系下粒子的运动方程。
假定这里的A是一个圆盘,B是圆盘上的一个粒子。
B的全局坐标系可以表示为:
[
R
B
X
R
B
Y
R
B
Z
]
=
[
R
A
X
R
A
Y
R
A
Z
]
+
[
s
i
n
(
θ
)
−
c
o
s
(
θ
)
0
c
o
s
(
θ
)
s
i
n
(
θ
)
0
0
0
1
]
[
R
B
x
′
R
B
y
′
R
B
z
′
]
\begin{bmatrix} R_{BX} \\ R_{BY} \\ R_{BZ} \end{bmatrix} = \begin{bmatrix} R_{AX} \\ R_{AY} \\ R_{AZ} \end{bmatrix} + \begin{bmatrix} sin(\theta) & -cos(\theta) & 0 \\ cos(\theta) & sin(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{Bx'} \\ R_{By'} \\ R_{Bz'} \end{bmatrix}
⎣⎡RBXRBYRBZ⎦⎤=⎣⎡RAXRAYRAZ⎦⎤+⎣⎡sin(θ)cos(θ)0−cos(θ)sin(θ)0001⎦⎤⎣⎡RBx′RBy′RBz′⎦⎤
用向量描述为:
R
B
/
O
=
R
A
/
0
+
R
O
T
A
T
E
A
/
O
∗
R
B
/
A
R_{B/O}=R_{A/0}+ROTATE_{A/O}*R_{B/A}
RB/O=RA/0+ROTATEA/O∗RB/A
观察B的速度
[
v
B
X
v
B
Y
v
B
Z
]
=
[
v
A
X
v
A
Y
v
A
Z
]
+
[
s
i
n
(
θ
)
−
c
o
s
(
θ
)
0
c
o
s
(
θ
)
s
i
n
(
θ
)
0
0
0
1
]
[
v
B
x
′
v
B
y
′
v
B
z
′
]
+
θ
˙
[
c
o
s
(
θ
)
−
s
i
n
(
θ
)
0
−
s
i
n
(
θ
)
c
o
s
(
θ
)
0
0
0
1
]
[
R
B
x
′
R
B
y
′
R
B
z
′
]
\begin{bmatrix} v_{BX} \\ v_{BY} \\ v_{BZ} \end{bmatrix} = \begin{bmatrix} v_{AX} \\ v_{AY} \\ v_{AZ} \end{bmatrix} + \begin{bmatrix} sin(\theta) & -cos(\theta) & 0 \\ cos(\theta) & sin(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{Bx'} \\ v_{By'} \\ v_{Bz'} \end{bmatrix} + \dot{\theta}\begin{bmatrix} cos(\theta) & -sin(\theta) & 0 \\ -sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{Bx'} \\ R_{By'} \\ R_{Bz'} \end{bmatrix}
⎣⎡vBXvBYvBZ⎦⎤=⎣⎡vAXvAYvAZ⎦⎤+⎣⎡sin(θ)cos(θ)0−cos(θ)sin(θ)0001⎦⎤⎣⎡vBx′vBy′vBz′⎦⎤+θ˙⎣⎡cos(θ)−sin(θ)0−sin(θ)cos(θ)0001⎦⎤⎣⎡RBx′RBy′RBz′⎦⎤
用向量描述
v
‾
B
/
O
=
v
‾
A
/
O
+
v
‾
B
/
A
+
θ
˙
∗
R
B
/
A
j
^
\overline{v}_{B/O}=\overline{v}_{A/O}+\overline{v}_{B/A}+\dot{\theta}*R_{B/A}\hat{j}
vB/O=vA/O+vB/A+θ˙∗RB/Aj^
从
叠
加
原
理
的
角
度
理
解
,
上
面
可
以
理
解
成
\color{red}{从叠加原理的角度理解,上面可以理解成}
从叠加原理的角度理解,上面可以理解成。先假定B点没有和A的相对运动,则B点的速度为A点的速度+线速度;再叠加B点和A的相对速度。用公式表示则为:
v
‾
B
/
O
=
v
‾
A
/
O
+
v
‾
B
/
A
∣
θ
˙
=
0
+
w
B
/
O
R
B
/
A
j
^
∣
θ
˙
=
w
\overline{v}_{B/O}=\overline{v}_{A/O}+\overline{v}_{B/A}\bigg|_{\dot{\theta} = 0}+w_{B/O}R_{B/A}\hat{j}\bigg|_{\dot{\theta}=w}
vB/O=vA/O+vB/A∣∣∣∣θ˙=0+wB/ORB/Aj^∣∣∣∣θ˙=w
观察B的加速度
[
a
B
X
a
B
Y
a
B
Z
]
=
[
a
A
X
a
A
Y
a
A
Z
]
+
[
s
i
n
(
θ
)
−
c
o
s
(
θ
)
0
c
o
s
(
θ
)
s
i
n
(
θ
)
0
0
0
1
]
[
a
B
x
′
a
B
y
′
a
B
z
′
]
+
θ
˙
[
c
o
s
(
θ
)
s
i
n
(
θ
)
0
−
s
i
n
(
θ
)
c
o
s
(
θ
)
0
0
0
1
]
[
v
B
x
′
v
B
y
′
v
B
z
′
]
+
θ
˙
[
c
o
s
(
θ
)
s
i
n
(
θ
)
0
−
s
i
n
(
θ
)
c
o
s
(
θ
)
0
0
0
1
]
[
v
B
x
′
v
B
y
′
v
B
z
′
]
+
θ
¨
[
c
o
s
(
θ
)
s
i
n
(
θ
)
0
−
s
i
n
(
θ
)
c
o
s
(
θ
)
0
0
0
1
]
[
R
B
x
′
R
B
y
′
R
B
z
′
]
−
θ
˙
2
[
s
i
n
(
θ
)
−
c
o
s
(
θ
)
0
c
o
s
(
θ
)
s
i
n
(
θ
)
0
0
0
1
]
[
R
B
x
′
R
B
y
′
R
B
z
′
]
\begin{bmatrix} a_{BX} \\ a_{BY} \\ a_{BZ} \end{bmatrix} = \begin{bmatrix} a_{AX} \\ a_{AY} \\ a_{AZ} \end{bmatrix} + \begin{bmatrix} sin(\theta) & -cos(\theta) & 0 \\ cos(\theta) & sin(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{Bx'} \\ a_{By'} \\ a_{Bz'} \end{bmatrix} + \dot{\theta}\begin{bmatrix} cos(\theta) & sin(\theta) & 0 \\ -sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{Bx'} \\ v_{By'} \\ v_{Bz'} \end{bmatrix} + \\ \dot{\theta}\begin{bmatrix} cos(\theta) & sin(\theta) & 0 \\ -sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{Bx'} \\ v_{By'} \\ v_{Bz'} \end{bmatrix}+ \ddot{\theta}\begin{bmatrix} cos(\theta) & sin(\theta) & 0 \\ -sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{Bx'} \\ R_{By'} \\ R_{Bz'} \end{bmatrix}- \dot{\theta}^2\begin{bmatrix} sin(\theta) & -cos(\theta) & 0 \\ cos(\theta) & sin(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{Bx'} \\ R_{By'} \\ R_{Bz'} \end{bmatrix}
⎣⎡aBXaBYaBZ⎦⎤=⎣⎡aAXaAYaAZ⎦⎤+⎣⎡sin(θ)cos(θ)0−cos(θ)sin(θ)0001⎦⎤⎣⎡aBx′aBy′aBz′⎦⎤+θ˙⎣⎡cos(θ)−sin(θ)0sin(θ)cos(θ)0001⎦⎤⎣⎡vBx′vBy′vBz′⎦⎤+θ˙⎣⎡cos(θ)−sin(θ)0sin(θ)cos(θ)0001⎦⎤⎣⎡vBx′vBy′vBz′⎦⎤+θ¨⎣⎡cos(θ)−sin(θ)0sin(θ)cos(θ)0001⎦⎤⎣⎡RBx′RBy′RBz′⎦⎤−θ˙2⎣⎡sin(θ)cos(θ)0−cos(θ)sin(θ)0001⎦⎤⎣⎡RBx′RBy′RBz′⎦⎤
用向量表示:
a
‾
B
/
O
=
a
‾
A
/
O
+
a
‾
B
/
A
+
2
θ
˙
v
B
/
A
j
^
+
θ
¨
R
B
/
A
j
^
−
θ
˙
2
R
B
/
A
i
^
\begin{aligned} \overline{a}_{B/O} &=\overline{a}_{A/O}+\overline{a}_{B/A}+2\dot{\theta}v_{B/A}\hat{j}+\\ & \ddot{\theta}R_{B/A}\hat{j}-\dot{\theta}^2R_{B/A}\hat{i} \end{aligned}
aB/O=aA/O+aB/A+2θ˙vB/Aj^+θ¨RB/Aj^−θ˙2RB/Ai^
上
面
可
以
理
解
成
\color{red}{上面可以理解成}
上面可以理解成
a
‾
B
/
O
=
a
‾
A
/
O
+
a
‾
B
/
A
+
科
氏
加
速
度
+
角
加
速
度
+
离
心
加
速
度
\overline{a}_{B/O} =\overline{a}_{A/O}+\overline{a}_{B/A}+科氏加速度+ 角加速度+离心加速度
aB/O=aA/O+aB/A+科氏加速度+角加速度+离心加速度
当物体A发生旋转时,坐标系Axyz’不再是惯性坐标系,但是牛顿力学是建立在惯性坐标系下的。所以引入虚拟的科里奥利力抵消科氏角速度的影响,引入离心加速度抵消离心加速度的影响。引入这两个虚拟力,就仍然将坐标系Axyz’当成惯性坐标系。
2.2 圆柱坐标系
物体B在圆柱坐标系下可以表示为
(
θ
,
β
,
z
)
(\theta, \beta, z)
(θ,β,z),和笛卡尔坐标系的转换关系为:
R
B
X
=
R
c
o
s
(
θ
)
R
B
Y
=
R
s
i
n
(
θ
)
R
B
Z
=
z
\begin{aligned} R_{BX}&=Rcos(\theta) \\ R_{BY}&=Rsin(\theta) \\ R_{BZ}&=z \end{aligned}
RBXRBYRBZ=Rcos(θ)=Rsin(θ)=z
不同于笛卡尔坐标系下的坐标系单位方向向量
x
⃗
,
y
⃗
,
z
⃗
\vec{x}, \vec{y}, \vec{z}
x,y,z不随时间变化,圆柱坐标系的单位向量
R
⃗
,
θ
⃗
\vec{R}, \vec{\theta}
R,θ是随着时间变化的。
- 计算
R
^
˙
\dot{\hat{R}}
R^˙
R ^ ˙ \dot{\hat{R}} R^˙表示 R ⃗ \vec{R} R单位方向向量的导数, R ^ 1 , R ^ 2 \hat{R}_1,\hat{R}_2 R^1,R^2是 R ⃗ 1 , R ⃗ 2 \vec{R}_1,\vec{R}_2 R1,R2的单位方向向量。
根据上图,有
δ
R
=
R
^
˙
Δ
t
=
Δ
θ
⃗
×
R
^
\delta R = \dot{\hat{R}}\Delta t=\Delta \vec{\theta} \times \hat{R}
δR=R^˙Δt=Δθ×R^
容易得到
R
⃗
˙
\dot{\vec{R}}
R˙
R
⃗
˙
=
Δ
θ
⃗
Δ
t
×
R
^
=
θ
˙
k
^
×
R
^
=
θ
˙
θ
^
\dot{\vec{R}}=\frac{\Delta \vec{\theta}}{\Delta t}\times \hat{R}=\dot{\theta}\hat{k} \times \hat{R}=\dot{\theta}\hat{\theta}
R˙=ΔtΔθ×R^=θ˙k^×R^=θ˙θ^
- 计算
θ
^
˙
\dot{\hat{\theta}}
θ^˙
θ ^ ˙ \dot{\hat{\theta}} θ^˙表示 θ ⃗ \vec{\theta} θ的单位方向向量的导数, θ ^ 1 , θ ^ 2 \hat{\theta}_1,\hat{\theta}_2 θ^1,θ^2的方向如下图。
根据上图,其中
s
i
n
(
Δ
θ
)
=
Δ
θ
sin(\Delta \theta)=\Delta \theta
sin(Δθ)=Δθ
δ
θ
=
θ
^
˙
Δ
t
=
2
s
i
n
(
Δ
θ
2
)
k
^
×
θ
^
=
−
θ
˙
Δ
t
R
^
\delta \theta=\dot{\hat{\theta}}\Delta t=2sin(\frac{\Delta \theta}{2})\hat{k}\times \hat{\theta}=-\dot{\theta}\Delta t\hat{R}
δθ=θ^˙Δt=2sin(2Δθ)k^×θ^=−θ˙ΔtR^
所以,
θ
^
˙
=
−
θ
˙
R
^
\dot{\hat{\theta}}=-\dot{\theta}\hat{R}
θ^˙=−θ˙R^
- 圆柱坐标系下的运动方程
B的位置:
R B / O = R A / O + R B / A R ^ + z B / A k ^ R_{B/O}=R_{A/O}+R_{B/A}\hat{R}+z_{B/A}\hat{k} RB/O=RA/O+RB/AR^+zB/Ak^
B的速度:
v B / O = v A / O + R ˙ B / A R ^ + R B / A R ^ ˙ + z ˙ B / A k ^ = v A / O + R ˙ B / A R ^ + R B / A θ ˙ θ ^ + z ˙ B / A k ^ \begin{aligned} v_{B/O} & =v_{A/O}+\dot{R}_{B/A}\hat{R}+R_{B/A}\dot{\hat{R}}+\dot{z}_{B/A}\hat{k} \\ & =v_{A/O}+\dot{R}_{B/A}\hat{R}+R_{B/A}\dot{\theta}\hat{\theta}+\dot{z}_{B/A}\hat{k} \end{aligned} vB/O=vA/O+R˙B/AR^+RB/AR^˙+z˙B/Ak^=vA/O+R˙B/AR^+RB/Aθ˙θ^+z˙B/Ak^
B的加速度:
a B / O = a A / O + z ¨ B / A k ^ + R ¨ B / A R ^ + R ˙ B / A θ ˙ θ ^ + R ˙ B / A θ ˙ θ ^ + R B / A θ ¨ θ ^ − R B / A θ ˙ 2 R ^ \begin{aligned} a_{B/O}=a_{A/O}+\ddot{z}_{B/A}\hat{k}+\ddot{R}_{B/A}\hat{R}+\dot{R}_{B/A}\dot{\theta}\hat{\theta}+\\ \dot{R}_{B/A}\dot{\theta}\hat{\theta}+R_{B/A}\ddot{\theta}\hat{\theta}-R_{B/A}\dot{\theta}^2\hat{R} \end{aligned} aB/O=aA/O+z¨B/Ak^+R¨B/AR^+R˙B/Aθ˙θ^+R˙B/Aθ˙θ^+RB/Aθ¨θ^−RB/Aθ˙2R^
通过圆柱坐标系和笛卡尔坐标系,都得出了B在全局坐标系下的位置,速度和加速度。
3 牛顿力学
牛顿力学解决物体受力和运动的联系,物体受力可以看成是外界环境对物体的输入,物体的运动状态(x,v,a)是状态变量。
3.1 惯性定律
惯性定律一个重要的作用就是判定,当前坐标系是否是惯性坐标系。
判断的方式:例如A在做旋转运动,判断坐标系Axyz‘是否是惯性坐标系。如果A跟着圆盘一起旋转,此时人假想在圆盘上放置一个微粒,如果微粒没有加速度,则为惯性系。
判断结果:显然在这样的系统里,粒子会马上飞走,Axyz’不是惯性坐标系。
3.2 F=ma
3.2.1 惯性坐标系
牛顿力学是基于惯性坐标系,如果判定选定的坐标系是惯性坐标系,直接套用公式。
3.2.2 非惯性坐标系
非惯性坐标系,可以通过虚拟力,同样可以将非惯性坐标系看成惯性坐标系。
-
离心力1
- step1 首先确定坐标系
因为是旋转运动,采用cylinder coordinate ( R ^ , θ ^ \hat{R},\hat{\theta} R^,θ^)。整个坐标系统的运动情况如上图。 - step2 描述B点的运动
B点的速度
v ‾ B / O = v ‾ A / O + Ω R θ ^ \overline{v}_{B/O}=\overline{v}_{A/O}+\Omega R \hat{\theta} vB/O=vA/O+ΩRθ^
B点的加速度
a ‾ B / O = a ‾ A / O − Ω 2 R R ^ \overline{a}_{B/O}=\overline{a}_{A/O}-\Omega^2 R \hat{R} aB/O=aA/O−Ω2RR^ - step3 free body diagram
绳子的拉力Ft使得物体B产生了加速度。
从 惯 性 系 的 角 度 理 解 : \color{red}{从惯性系的角度理解:} 从惯性系的角度理解:
B球的受力如上图,如果在一个惯性系下,那么球应该往接近A的方向运动,但是实际上,并没有。
所以为了能在惯性系上研究这个问题,根据离心加速度,虚拟出一个离心力Fc,和Ft受力平衡了。
- step1 首先确定坐标系
-
离心力2
- step1 确定坐标系
如果以全局坐标系o,去研究B点的运动,就没有办法利用轨迹的信息了。这里仍然采用cylinder coordinate,根据轨迹建立局部坐标系。 - step2 描述B的运动
v ‾ B / O = v ‾ A / O + w R θ ^ \overline{v}_{B/O}=\overline{v}_{A/O}+wR\hat{\theta} vB/O=vA/O+wRθ^
a ‾ B / O = a ‾ A / O + a B / A θ ^ − v 2 ρ R ^ \overline{a}_{B/O}=\overline{a}_{A/O}+a_{B/A}\hat{\theta}-\frac{v^2}{\rho}\hat{R} aB/O=aA/O+aB/Aθ^−ρv2R^ - step3 描述B的受力free body diagram
- step1 确定坐标系
-
科里奥利力1
- step1 建立坐标系
这里坐标系比较明显,采用cylinder coordination. - step2 描述B的运动
v ‾ B / O = v ‾ A / O + θ ˙ R B / A θ ^ + R ˙ B / A R ^ \overline{v}_{B/O}=\overline{v}_{A/O}+\dot{\theta}R_{B/A}\hat{\theta}+\dot{R}_{B/A}\hat{R} vB/O=vA/O+θ˙RB/Aθ^+R˙B/AR^
a ‾ B / O = a ‾ A / O + ( θ ¨ R + 2 R ˙ θ ˙ ) θ ^ + ( R ¨ − θ ˙ 2 R ) R ^ = a ‾ A / O + ( θ ¨ R + 2 R ˙ θ ˙ ) θ ^ + ( − θ ˙ 2 R ) R ^ \begin{aligned} \overline{a}_{B/O} &=\overline{a}_{A/O}+(\ddot{\theta}R+2\dot{R}\dot{\theta})\hat{\theta}+(\ddot{R}-\dot{\theta}^2R)\hat{R} \\ &=\overline{a}_{A/O}+(\ddot{\theta}R+2\dot{R}\dot{\theta})\hat{\theta}+(-\dot{\theta}^2R)\hat{R} \end{aligned} aB/O=aA/O+(θ¨R+2R˙θ˙)θ^+(R¨−θ˙2R)R^=aA/O+(θ¨R+2R˙θ˙)θ^+(−θ˙2R)R^ - step3 B的受力情况free body diagram
计 算 出 来 的 离 心 加 速 度 是 − R ^ 方 向 的 , 但 是 实 际 上 的 B 在 R ^ 的 方 向 上 速 度 越 来 越 大 。 \color{red}{计算出来的离心加速度是-\hat{R}方向的,但是实际上的B在\hat{R}的方向上速度越来越大。} 计算出来的离心加速度是−R^方向的,但是实际上的B在R^的方向上速度越来越大。
这个从惯性系上根本无法理解,此时引入虚拟的离心力Fc,这些问题就解决了。
所以对于离心加速度和科氏加速度最好将他们看成对应的虚拟力Fc和F,不要当成惯性系中的加速度去理解。
- step1 建立坐标系
-
科里奥利力2
某人坐在一个匀速旋转的圆盘上,某一时刻,将手上的球B放开,假定球和圆盘的摩擦力忽略不计。
这里没有任何外力,只有虚拟的科里奥利力和离心力,所以在坐标系Axyz’上去计算球B的运动并不容易。因为B不受外力,将B放在全局坐标系O上,研究反而最简单。
3.3 作用力与反作用力
第一定律和第二定律只能研究单个粒子的运动,物体在现实世界中的运动,需要在一定的track上,受到一些约束。
如果是下面这样的平移运动问题,一个车厢中塞满了货物,车厢受到牵引力F。
每个物体的受力如下图,
F
⃗
i
=
∑
F
⃗
i
i
n
+
∑
F
⃗
i
e
x
t
=
m
i
a
i
\vec{F}_i=\sum \vec{F}_i^{in}+\sum \vec{F}_i^{ext}=m_ia_i
Fi=∑Fiin+∑Fiext=miai
因为外界环境的限制,所有个体的加速度都是一致的,又因为牛顿第三定律,内力互相抵消。
∑
m
i
a
=
∑
F
⃗
i
=
F
⃗
i
e
x
t
\sum m_ia=\sum \vec{F}_i=\vec{F}_i^{ext}
∑mia=∑Fi=Fiext
对
于
平
移
运
动
,
即
使
是
不
能
看
成
质
点
的
物
体
,
也
是
可
以
直
接
使
用
牛
顿
力
学
的
。
\color{red}{对于平移运动,即使是不能看成质点的物体,也是可以直接使用牛顿力学的。}
对于平移运动,即使是不能看成质点的物体,也是可以直接使用牛顿力学的。
如
果
是
旋
转
运
动
,
牛
顿
的
力
学
就
产
生
解
决
不
了
,
欧
拉
填
补
了
这
块
的
空
白
。
\color{blue}{如果是旋转运动,牛顿的力学就产生解决不了,欧拉填补了这块的空白。}
如果是旋转运动,牛顿的力学就产生解决不了,欧拉填补了这块的空白。
References
[1] https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-fall-2011/