1 Introduction
第一个部分借助牛顿三大定律,已经能很好的研究粒子的运动规律了,接下来需要将粒子的运动规律扩展到物体的运动。
2 object motion
2.1 基础属性
- 物体质心和质量
根据牛顿第三定律,多个物体组成的系统受到的力,等于外力之和。
F外=∑mid2ridt2=∑d2(miri)dt2=d2(∑miri)dt2=d2(∑MR)dt2 \begin{aligned} F_{外} &=\sum m_i \frac{d^2r_i}{dt^2} \\ & = \sum \frac{d^2 (m_i r_i)}{dt^2} \\ & = \frac{d^2 (\sum m_i r_i)}{dt^2} \\ & = \frac{d^2 (\sum M R)}{dt^2} \end{aligned} F外=∑midt2d2ri=∑dt2d2(miri)=dt2d2(∑miri)=dt2d2(∑MR)
根据系统质心的位移,即可以计算出系统所受的外力。
2.2 动能和动量
实际系统中无时无刻不在发生复杂的变化,物理学上通过能量守恒,投过这些表面的复杂的变化,研究背后的规律。
2.2.1 系统的动能和动量
- 系统的动能
dT=FdldT=FvdtT=∫mdvdtvdtT=0.5mv2 \begin{aligned} dT & =Fdl \\ dT & = Fvdt \\ T & = \int m\frac{dv}{dt}vdt\\ T & = 0.5mv^2 \end{aligned} dTdTTT=Fdl=Fvdt=∫mdtdvvdt=0.5mv2
在动力学系统中,物体内部原子往往也做功,导致了系统的动能和系统之和,和外力做功不相同。
但是系统的动量变化是等于外力的产生的冲量。 - 单个粒子的冲量和动量
F=mdvdt∫t1t2Fdt=mv2−mv1(2-4) \begin{aligned} F &=m\frac{dv}{dt}\\ \int_{t1}^{t2}Fdt &=mv_2-mv_1 \end{aligned} \tag{2-4} F∫t1t2Fdt=mdtdv=mv2−mv1(2-4) - 系统的冲量和惯量
结合公式(2-2)
∑∫t1t2(Fi)extdt=mi(vi)2−mi(vi)1∑∫t1t2(Fi)extdt=mG(vG)1−mG(vG)2(2.5) \begin{aligned} \sum \int_{t1}^{t2}(F_i)_{ext} dt & =m_i (v_i)_2-m_i(v_i)_1 \\ \sum \int_{t1}^{t2}(F_i)_{ext} dt & = m_G(v_G)_1-m_G(v_G)_2 \end{aligned} \tag{2.5} ∑∫t1t2(Fi)extdt∑∫t1t2(Fi)extdt=mi(vi)2−mi(vi)1=mG(vG)1−mG(vG)2(2.5)
2.2.2 角动量和转矩
-
系统的转矩
根据能量的观点,如果物体转过Δθ\Delta \thetaΔθ,外力做功为[3]
ΔW=FxΔx+FyΔy=−FxyΔθ+FyxΔθ=r⃗×F⃗Δθ(2.6) \begin{aligned} \Delta W &= F_x \Delta x+F_y \Delta y \\ &=-F_xy\Delta \theta+F_yx\Delta \theta \\ & = \vec{r} \times \vec{F} \Delta \theta \end{aligned} \tag{2.6} ΔW=FxΔx+FyΔy=−FxyΔθ+FyxΔθ=r×FΔθ(2.6)
根据几何学计算,
Δx=RΔθsin(θ)=−RΔθyR=−yΔθ(2.7) \begin{aligned} \Delta x &=R\Delta \theta sin(\theta) &=-R\Delta \theta \frac{y}{R} &=-y\Delta \theta \end{aligned} \tag{2.7} Δx=RΔθsin(θ)=−RΔθRy=−yΔθ(2.7)
同理,Δy=xΔθ\Delta y=x\Delta \thetaΔy=xΔθ
根据公式2.6, 将转矩定义为:
τ=r⃗×F⃗(2.8) \tau = \vec{r} \times \vec{F} \tag{2.8} τ=r×F(2.8)
-
系统的角动量
根据外力产生的冲量定义出来一般的动量,对于角动量,同样,从外转矩出发。
d(moment)dt=τ=−Fxy+Fyx=−md2xdt2y+md2ydt2x=d(−pxy+pyx)dt(2.9) \begin{aligned} \frac{d(moment)}{dt} &=\tau \\ &=-F_xy+F_yx \\ &=-m\frac{d^2x}{dt^2}y+m\frac{d^2y}{dt^2}x\\ &=\frac{d(-p_xy+p_yx)}{dt} \end{aligned} \tag{2.9} dtd(moment)=τ=−Fxy+Fyx=−mdt2d2xy+mdt2d2yx=dtd(−pxy+pyx)(2.9)
定义角动量:
Ho=r‾×p⃗(2.10) \begin{aligned} H_o &=\overline{r} \times \vec{p} \end{aligned} \tag{2.10} Ho=r×p(2.10)
这个公式里r‾\overline{r}r和坐标系的选择有很大关系。
- 角动量和转矩与坐标系选取的关系
根据定义:
τ‾B/A=R‾B/A×FB/O=R‾B/A×mv‾˙B/O=d(R‾B/A×mv‾B/O)dt−R˙B/A×mv‾B/O=d(R‾B/A×mv‾B/O)dt−(v‾B/O−v‾A/O)×mv‾B/O=d(HB/A)dt+v‾A/O×P‾B/O(2.11) \begin{aligned} \overline{\tau}_{B/A} &=\overline{R}_{B/A}\times F_{B/O} \\ &=\overline{R}_{B/A}\times m\dot{\overline{v}}_{B/O} \\ &=\frac{d(\overline{R}_{B/A}\times m\overline{v}_{B/O})}{dt}-\dot{R}_{B/A} \times m\overline{v}_{B/O} \\ &=\frac{d(\overline{R}_{B/A}\times m\overline{v}_{B/O})}{dt}-(\overline{v}_{B/O}-\overline{v}_{A/O})\times m \overline{v}_{B/O} \\ & = \frac{d(H_{B/A})}{dt}+\overline{v}_{A/O}\times \overline{P}_{B/O} \end{aligned} \tag{2.11} τB/A=RB/A×FB/O=RB/A×mv˙B/O=dtd(RB/A×mvB/O)−R˙B/A×mvB/O=dtd(RB/A×mvB/O)−(vB/O−vA/O)×mvB/O=dtd(HB/A)+vA/O×PB/O(2.11)
关于HB/A=R⃗B/A×P⃗B/OH_{B/A}=\vec{R}_{B/A}\times \vec{P}_{B/O}HB/A=RB/A×PB/O,只是将参考点选择成A点,动量和能量都是相对于惯性坐标系设定的。
虽然公式已经计算出来,公式(2-10)最重要的作用是通过这个公式选择坐标系的位置。
只要选择的A点,满足v‾A/O\overline{v}_{A/O}vA/O
2.2.3 动量的平移不变性和角动量的各向同性
在惯性坐标系上,动量和坐标系的选取无关;同样在惯性坐标系上,角动量则和坐标系的选取有直接的关系。
对机构上某点进行转矩校核时,往往将坐标系建在该点上。
- 当坐标系建在o点
h‾A/O=R‾A/O×P‾A/O=RR^×mRθ˙θ^=mR2θ˙k^ \begin{aligned} \overline{h}_{A/O} &=\overline{R}_{A/O} \times \overline{P}_{A/O} \\ &=R\hat{R}\times mR\dot{\theta}\hat{\theta} \\ &=mR^2\dot{\theta}\hat{k} \end{aligned} hA/O=RA/O×PA/O=RR^×mRθ˙θ^=mR2θ˙k^
计算o点的转矩有:
τA/O=mR2θ¨k^ \tau_{A/O}=mR^2\ddot{\theta}\hat{k} τA/O=mR2θ¨k^
这个转矩显然是让θ\thetaθ加速的动力源。 - 当坐标系建在o1点
h‾A/O=(RR^+zk^)×mRθ˙θ^=mR2θ˙k^−mzRθ˙R^ \begin{aligned} \overline{h}_{A/O} &=(R\hat{R}+z\hat{k}) \times mR\dot{\theta}\hat{\theta} \\ &=mR^2\dot{\theta}\hat{k}-mzR\dot{\theta}\hat{R} \end{aligned} hA/O=(RR^+zk^)×mRθ˙θ^=mR2θ˙k^−mzRθ˙R^
计算o1点的转矩
τA/O=mR2θ¨k^−mzRθ¨R^−mzRθ˙2θ^=(θ加速动力源)+(o1额外所受的转矩) \begin{aligned} \tau_{A/O} &=mR^2\ddot{\theta}\hat{k}-mzR\ddot{\theta}\hat{R}-mzR\dot{\theta}^2\hat{\theta} \\ &=(\theta加速动力源)+(o1额外所受的转矩) \end{aligned} τA/O=mR2θ¨k^−mzRθ¨R^−mzRθ˙2θ^=(θ加速动力源)+(o1额外所受的转矩)
2.3 non-inertial frame下的fbd
2.3.1 平移运动
如果当前的参考系是非惯性系,是无法直接使用牛顿力学的,需要重新寻找一个全局坐标系,在新的坐标系上应用牛顿力学。
- 以oXYZ坐标系进行分析
∑Fext=N−mg=ma=mg4 \sum F_{ext}=N-mg=ma=\frac{mg}{4} ∑Fext=N−mg=ma=4mg
很容易得到N=5mg4N=\frac{5mg}{4}N=45mg - 以Axyz坐标系进行分析
Axyz坐标系因为有加速度,将这个加速度用虚拟力\color{red}{虚拟力}虚拟力表示,Axyz就可以等效成惯性坐标系了。
fictious force和参考系的ma方向相反。即f=-ma。
N=mg+f=5mg4 N=mg+f=\frac{5mg}{4} N=mg+f=45mg
2.3.2 旋转运动
- 旋转运动1: 有一根绳子牵引着小球运动,但是绳子可以通过桌子上的小孔进行伸缩。
方法1:计算物体B在惯性坐标系oXYZ下的加速度,然后再用牛顿第二定律。根据本系列1,可以计算B相对于OXYZ的加速度。
a‾B/O=a‾A/O+(θ¨ArB/A+2θ˙Ar˙B/A)θ^+(r¨A/B−θ˙2rB/A)R^ \begin{aligned} \overline{a}_{B/O} = & \overline{a}_{A/O}+(\ddot{\theta}_{A}r_{B/A}+2\dot{\theta}_{A}\dot{r}_{B/A})\hat{\theta} \\ &+(\ddot{r}_{A/B}-\dot{\theta}^2r_{B/A})\hat{R} \end{aligned} aB/O=aA/O+(θ¨ArB/A+2θ˙Ar˙B/A)θ^+(r¨A/B−θ˙2rB/A)R^
绘制物体B的fbd(free body diagram)如下图:
即根据牛顿力学,物体只在R^\hat{R}R^这个方向上受力。
θ¨ArB/A+2θ˙Ar˙B/A=0Ft=m(r¨A/B−θ˙2rB/A) \begin{aligned} \ddot{\theta}_{A}r_{B/A}+2\dot{\theta}_{A}\dot{r}_{B/A} &=0 \\ F_t=m(\ddot{r}_{A/B}-\dot{\theta}^2r_{B/A}) \end{aligned} θ¨ArB/A+2θ˙Ar˙B/AFt=m(r¨A/B−θ˙2rB/A)=0
方法2:根据动量和角动量计算物体B的受力和转矩。
根据动量和受力得出的关系如下:
vA/O=R˙R^+Rθ˙θ^∑Fext=dPA/Odt=mR¨R^+mR˙θ˙θ^+mR˙θ˙θ^+mRθ¨θ^−mRθ˙2R^ \begin{aligned} v_{A/O} & =\dot{R}\hat{R}+R\dot{\theta}\hat{\theta} \\ \sum F_{ext} & = \frac{dP_{A/O}}{dt} \\ &=m\ddot{R}\hat{R}+m\dot{R}\dot{\theta}\hat{\theta}+m\dot{R}\dot{\theta}\hat{\theta}+mR\ddot{\theta}\hat{\theta}-mR\dot{\theta}^2\hat{R} \end{aligned} vA/O∑Fext=R˙R^+Rθ˙θ^=dtdPA/O=mR¨R^+mR˙θ˙θ^+mR˙θ˙θ^+mRθ¨θ^−mRθ˙2R^
根据角动量和转矩得出的关系如下:
角动量公式:
hB/A=R‾B/A×P‾B/O=RR^×(mR˙R^+mRθ˙θ^)=mR2θ˙k^ \begin{aligned} h_{B/A}&=\overline{R}_{B/A} \times \overline{P}_{B/O} \\ &=R\hat{R} \times (m\dot{R}\hat{R}+mR\dot{\theta}\hat{\theta}) \\ &=mR^2\dot{\theta}\hat{k} \end{aligned} hB/A=RB/A×PB/O=RR^×(mR˙R^+mRθ˙θ^)=mR2θ˙k^
根据角动量和转矩关系∑τext=dhB/Adt+vA/O×PB/O\sum \tau_{ext}=\frac{dh_{B/A}}{dt}+v_{A/O} \times P_{B/O}∑τext=dtdhB/A+vA/O×PB/O:
∑τext=2mRR˙θ˙k^+mR2θ¨k^=0 \begin{aligned} \sum \tau_{ext}=2mR\dot{R}\dot{\theta}\hat{k}+mR^2\ddot{\theta}\hat{k} =0 \end{aligned} ∑τext=2mRR˙θ˙k^+mR2θ¨k^=0
方法3:添加虚拟力后,将坐标系AXYZ同样当成惯性坐标系。
2.3.3 系统的自由度
自由度计算公式为:
dof=6n+3m−c
dof=6n+3m-c
dof=6n+3m−c
n: rigid body, 需要考虑尺寸大小的物体,有平移和旋转运动
m: particle,不需要考虑尺寸大小的物体,只有平移运动
c: constraints
-
example1: 小球在斜面上运动,free body digram 如下图。
计算摩擦力方向时,将物体的运动方向看成是正向运动
计算constraints,有1个刚体,5个约束,dof=6*1-5=1
y=y˙=y¨=0z=z˙=z¨=0x=−Rθθx=0θy=0 \begin{aligned} y&=\dot{y}=\ddot{y}=0 \\ z&=\dot{z}=\ddot{z}=0 \\ x&=-R\theta \\ \theta_x &=0 \\ \theta_y &=0 \end{aligned} yzxθxθy=y˙=y¨=0=z˙=z¨=0=−Rθ=0=0
-
example2:
yA=0xB=0z=z˙=z¨=0θx=0θy=0 \begin{aligned} y_A&=0 \\ x_B&=0 \\ z&=\dot{z}=\ddot{z}=0 \\ \theta_x &=0 \\ \theta_y &=0 \end{aligned} yAxBzθxθy=0=0=z˙=z¨=0=0=0
-
example3:
将弹簧完全不受力时,作为坐标系原点。计算弹簧受力和阻尼力时,认为物体的运动是正的。
-
example4:
假设小球在小车上滚动,球和小车没有摩檫力。
计算小球的速度,通过非惯性坐标系速度计算
ovG=ovA+AvG∣wA=0+wG×ARG=3m/s−6rad/s∗1.5m+0=−6m/s \begin{aligned} ^ov_G &=^ov_A+^Av_G|_{w_A=0}+w_G\times ^AR_G \\ &=3m/s-6rad/s*1.5m+0=-6m/s \end{aligned} ovG=ovA+AvG∣wA=0+wG×ARG=3m/s−6rad/s∗1.5m+0=−6m/s
计算小球的加速度,通过非惯性系坐标系加速度计算
oa‾G=oa‾A+w‾G×(w‾G×ARG)+2w‾GARG˙+w˙GA×RG=−0.5i^−54j^−1.5w˙Gi^ \begin{aligned} ^o\overline{a}_G &=^o\overline{a}_A+\overline{w}_G\times(\overline{w}_G\times ^AR_G)+2\overline{w}_G\dot{^AR_G}+\dot{w}_G^A\times R_G\\ &=-0.5\hat{i}-54\hat{j}-1.5\dot{w}_G\hat{i} \end{aligned} oaG=oaA+wG×(wG×ARG)+2wGARG˙+w˙GA×RG=−0.5i^−54j^−1.5w˙Gi^
-
example5:
这是一个多粒子的案例,在导轨上运动的小车内部有个关节在做匀速旋转运动w,计算物体A和小球G的受力。
实体有两个,自由度的限制有10个,系统一共有2个自由度。
zA=z˙A=z¨A=0yA=y˙A=y¨A=0θAx=0θAy=0θAz=0zG=z˙G=z¨G=0AxG=Rcos(θG)AyG=Rsin(θG)θGx=0θGy=0 \begin{aligned} z_A &=\dot{z}_A &=\ddot{z}_A=0\\ y_A &=\dot{y}_A &=\ddot{y}_A=0\\ \theta_{Ax}&=0 \\ \theta_{Ay}&=0 \\ \theta_{Az}&=0 \\ z_G &=\dot{z}_G&=\ddot{z}_G=0 \\ ^Ax_G&=Rcos(\theta_G) \\ ^Ay_G&=Rsin(\theta_G) \\ \theta_{Gx}&=0 \\ \theta_{Gy}&=0 \end{aligned} zAyAθAxθAyθAzzGAxGAyGθGxθGy=z˙A=y˙A=0=0=0=z˙G=Rcos(θG)=Rsin(θG)=0=0=z¨A=0=y¨A=0=z¨G=0
对A进行受力分析
对球B的受力进行分析,直接通过牛顿第二定律
∑Fext−mgj^=mx¨A−mwG2Rcos(θG)i^−mwG2Rsin(θG)j^FTj=mgj^−mwG2Rsin(θG)j^
\begin{aligned}
\sum F_{ext}-mg\hat{j} &=m\ddot{x}_A-mw_G^2Rcos(\theta_G)\hat{i}-mw_G^2Rsin(\theta_G)\hat{j}\\
F_{Tj}&=mg\hat{j}-mw_G^2Rsin(\theta_G)\hat{j}
\end{aligned}
∑Fext−mgj^FTj=mx¨A−mwG2Rcos(θG)i^−mwG2Rsin(θG)j^=mgj^−mwG2Rsin(θG)j^
再结合A,有
NA+mwG2Rsin(θG)−mg=mAg
N_A+mw_G^2Rsin(\theta_G)-mg=m_Ag
NA+mwG2Rsin(θG)−mg=mAg
2.3.4 fictious force
fictious force非常神奇的一点是人,可以感受到这些虚拟力,如人用绳子牵引小球转动,感觉到小球的离心力;乘坐电梯的时候能感受到电梯的失重和超重。
小车上向下的加速度的虚拟力和重力叠加而成的力,让水面发生改变。
References
[1] https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-fall-2011/index.htm
[2] Hibbeler, Russell C. Engineering Mechanics: Dynamics, Student Value Edition. Prentice Hall, 2015.
[3] Feynman, Richard P., Robert B. Leighton, and Matthew Sands. “The feynman lectures on physics; vol. i.” American Journal of Physics 33.9 (1965): 750-752.