如何用离散二维卷积公式描述卷积过程(说实话,我没搞懂为什么索引为什么设置成对称的模式。)

本文详细解释了二维卷积的公式表达方式,涉及滑动窗口操作和索引设置的疑问,包括卷积核对称性与负数索引的原因。同时讨论了三维卷积的特殊情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:如何用离散二维卷积公式描述卷积过程(说实话,我没搞懂为什么索引为什么设置成对称的模式。)

众所周知,描述图像卷积过程,可以使用图形法描述,也可以用公式法描述,但是具体用代码实现可能使用的for循环之类的,或者数组索引。

图像法描述卷积如下图所示。

描述:卷积时,以滑动窗口的形式,从左到右,从上到下,3个通道对应的位置相乘在求和。但是,在代码中,如何进行滑动的,还未知。

公式表示二维卷积过程。(为了解释方便这里仅展示二维卷积过程)

cross-correlation(互相关)公式表示如下:有网友说的卷积其实就是用的互相关。

G[i,j]=\sum_{u=-k}^{k}\sum_{v=-k}^{k}h[u,v]F[i+u,j+v]

实际上,Convolution 离散二维卷积运算公式和互相关cross-correlation类似,区别在于离散二维卷积将输入特征图进行了180度的翻转,公式如下。

G[i,j]=\sum_{u=-k}^{k}\sum_{v=-k}^{k}h[u,v]F[i-u,j-v]

其中输入特征图的索引被定义成了0,1,2,3,4,5,6;卷积核的索引被定义成了-1,0,1;输出特征图的索引被定义成了1,2,3,4。(至于为什么输入的索引从0开始,卷积核的索引是对称式,并且包含负数,输出特征图的索引从1开始,不得而知)

当i=1,j=1时,G[1,1]=

h[-1,-1]×F[2,2]+h[-1,0]×F[2,1]+h[-1,1]×F[2,0]+

h[0,-1]×F[1,2]+h[0,0]×F[1,1]+h[0,1]×F[1,0]+

h[1,-1]×F[0,2]+h[1,0]×F[0,1]+h[1,1]×F[0,0]

扩展一下成三维的卷积。

G[i,j]=\sum_{u=-k}^{k}\sum_{v=-k}^{k}\sum_{m=0}^{c}h[u,v,m]F[i-u,j-v,c-m]

事实上,普通卷积,如果只有一个卷积核,输入是三维,卷积核是三维,那么输出是二维的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神笔馬良

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值