前提:hive 中使用的排序有oder by, sort by,distribute By,cluster By
具体使用如下
测试数据:
0: jdbc:hive2://hadoop-03:10000> select * from emp;
+------------+------------+------------+----------+---------------+----------+-----------+-------------+--+
| emp.empno | emp.ename | emp.job | emp.mgr | emp.hiredate | emp.sal | emp.comm | emp.deptno |
+------------+------------+------------+----------+---------------+----------+-----------+-------------+--+
| 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.0 | NULL | 20 |
| 7499 | ALLEN | SALESMAN | 7698 | 1981-2-20 | 1600.0 | 300.0 | 30 |
| 7521 | WARD | SALESMAN | 7698 | 1981-2-22 | 1250.0 | 500.0 | 30 |
| 7566 | JONES | MANAGER | 7839 | 1981-4-2 | 2975.0 | NULL | 20 |
| 7654 | MARTIN | SALESMAN | 7698 | 1981-9-28 | 1250.0 | 1400.0 | 30 |
| 7698 | BLAKE | MANAGER | 7839 | 1981-5-1 | 2850.0 | NULL | 30 |
| 7782 | CLARK | MANAGER | 7839 | 1981-6-9 | 2450.0 | NULL | 10 |
| 7788 | SCOTT | ANALYST | 7566 | 1987-4-19 | 3000.0 | NULL | 20 |
| 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.0 | NULL | 10 |
| 7844 | TURNER | SALESMAN | 7698 | 1981-9-8 | 1500.0 | 0.0 | 30 |
| 7876 | ADAMS | CLERK | 7788 | 1987-5-23 | 1100.0 | NULL | 20 |
| 7900 | JAMES | CLERK | 7698 | 1981-12-3 | 950.0 | NULL | 30 |
| 7902 | FORD | ANALYST | 7566 | 1981-12-3 | 3000.0 | NULL | 20 |
| 7934 | MILLER | CLERK | 7782 | 1982-1-23 | 1300.0 | NULL | 10 |
+------------+------------+------------+----------+---------------+----------+-----------+-------------+--+
1.order by :使用 order by 子句做全局排序,Hive分析数据底层的实现是MapReduce,
order by做全局排序,是通过只有一个reducer做到的
hive (default)> select * from emp order by sal desc;
2.sort By:sort by为每个reducer产生一个排序文件。每个Reducer内部进行排序,对全局结果集来说不是排序
对于大规模的数据集order by的效率非常低。在很多情况下,并不需要全局排序,此时可以使用sort by
简单来说就是分区内进行了排序
hive (default)> set mapreduce.job.reduces=3;
hive (default)> select * from emp sort by deptno desc;
hive (default)> insert overwrite local directory '/opt/module/datas/sortby-result' select * from emp sort by deptno desc;
结果如下:
3.distribute By: 在有些情况下,我们需要控制某个特定行应该到哪个reducer,通常是为了进行后续的聚集操作。distribute by 子句可以做这件事。distribute by类似MR中partition(自定义分区),进行分区,结合sort by使用。
简单来说就是:按照那个字段进行分区
对于distribute by进行测试,一定要分配多reduce进行处理,否则无法看到distribute by的效果。
案例实操:
先按照部门编号分区,每个分区内再按照员工编号降序排序。
hive (default)> set mapreduce.job.reduces=3;
hive (default)> insert overwrite local directory '/opt/module/datas/distribute-result' select * from emp distribute by deptno sort by empno desc;
结果:
注意:
1.distribute by的分区规则是根据分区字段的hash码与reduce的个数进行模除后,余数相同的分到一个区。
2.Hive要求DISTRIBUTE BY语句要写在SORT BY语句之前。
4. cluster By
当distribute by和sorts by字段相同时,可以使用cluster by方式。
以下两种写法等价
hive (default)> select * from emp cluster by deptno;
hive (default)> select * from emp distribute by deptno sort by deptno;
注意:
cluster by除了具有distribute by的功能外还兼具sort by的功能。
但是排序只能是升序排序,不能指定排序规则为ASC或者DESC。
总结: 个人经验,sort by 搭配distribute by 搭配经常使用
order by 几乎不用,生产中数据量很大,效果更明显