杰卡德相似度(Jaccard similarity)
先总体上从ChatGPT上了解个大概
杰卡德相似度(Jaccard similarity),也称为杰卡德系数(Jaccard coefficient),是一种用于比较两个集合相似性的度量方法。它基于集合论中的概念, 通过计算两个集合的交集与并集之间的比例 来确定它们的相似程度。
杰卡德相似度的计算公式如下:
J(A, B) = |A ∩ B| / |A ∪ B|
其中,A 和 B 是要比较的两个集合。A ∩ B 表示两个集合的交集,A ∪ B 表示两个集合的并集。|A| 表示集合 A 的基数(元素个数)。
<