【Bugs】openai.error.ServiceUnavailableError The server is overloaded or not ready yet

当调用OpenAIChatGPTAPI时遇到ServiceUnavailableError,可以使用指数退避策略进行重试。代码示例展示了如何利用tenacity库实现这一策略,通过递增的等待时间在遇到错误时自动重试,最多尝试10次,最大等待时间为60秒。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【Bugs】openai.error.ServiceUnavailableError: The server is overloaded or not ready yet.

@author: SUFEHeisenberg

@date: 2023/07/21

在调用ChatGPT API时报错:

openai.error.ServiceUnavailableError: The server is overloaded or not ready yet.

Solution

利用指数退避的思想:

import openai
from tenacity import (
    retry,
    stop_after_attempt,
    wait_random_exponential,
    retry_if_exception_type
)  # for exponential backoff

@retry(
    retry=retry_if_exception_type((openai.error.APIError, openai.error.APIConnectionError, openai.error.RateLimitError, openai.error.ServiceUnavailableError, openai.error.Timeout)), 
    wait=wait_random_exponential(multiplier=1, max=60), 
    stop=stop_after_attempt(10)
)

def chat_completion_with_backoff(**kwargs):
    return openai.ChatCompletion.create(**kwargs)

response = chat_completion_with_backoff(
                model=model,
                messages=[
                    {"role": "system", "content": system_msg},
                    {"role": "user", "content": longtext},
                ],
                max_tokens=max_tokens,
            )

Reference

https://community.openai.com/t/openai-error-serviceunavailableerror-the-server-is-overloaded-or-not-ready-yet/32670/20

### 导致 Internal Server Error 的可能原因 Internal Server Error 是 HTTP 状态码 500,通常表示服务器遇到了意外情况,无法完成请求。这种错误可能是由多种因素引起,包括但不限于以下几种: 1. **软件包冲突或依赖问题** 在某些应用程序中,尤其是像 Jupyter Notebook 这样的工具,可能会因为核心组件(如 `nbconvert` 或其他依赖库)版本不兼容而导致此错误[^1]。 2. **配置错误** 配置文件中的语法错误或其他不当设置可能导致服务器运行异常。例如,在 Java 应用程序中,未正确配置文件上传的最大尺寸限制会引发类似的错误[^3]。 3. **资源耗尽** 如果服务器内存不足、CPU 使用率过高或磁盘空间已满,则可能出现此类错误。这些问题会影响服务器的正常操作能力。 4. **后端服务连接超时** 对于分布式系统而言,当客户端向服务器发送较大数据包时,如果网络延迟较高或者服务器未能及时响应,也可能触发该错误。 5. **应用逻辑缺陷** 尽管这种情况较少见,但如果存在隐藏的应用层 bug 并且这些 bugs 只有在特定条件下才会暴露出来的话,它们同样能够造成 internal server errors[^4]。 6. **第三方插件/扩展故障** 安装了有问题的浏览器插件或者是网站本身使用的外部脚本加载失败等情况也会间接影响页面加载过程从而显示这个状态码给用户看到. --- ### 解决方案 针对以上提到的各种可能性, 下面列举了一些通用以及具体场景下的解决策略: #### 方法一: 升级或重新安装必要模块 对于基于 Python 的项目来说(比如Jupyter),尝试更新相关的核心库可以帮助修复潜在的问题. ```bash pip install --upgrade --user nbconvert ``` #### 方法二: 检查并调整环境变量与全局设定值 确保所有必要的路径都已经正确定义好并且没有任何拼写上的失误;另外也要注意查看是否有任何安全机制阻止了正常的访问权限授予行为发生. #### 方法三: 修改webserver参数来适应更大的负载需求 如果是由于HTTP请求体过大引起的timeout现象,则可以通过更改Nginx/Apache等Web Servers的相关选项来进行优化: ```nginx client_max_body_size 1024M; sendfile on; keepalive_timeout 1800; ``` #### 方法四: 查看详细的error logs记录信息以便定位确切位置 几乎所有的现代框架都会提供某种形式的日志功能用来跟踪发生的事件序列及其上下文线索——利用这一点往往可以快速缩小范围直至找到根本源头所在之处. #### 方法五: 实施压力测试模拟真实世界的工作负荷状况 最后但并非最不重要的一点就是执行全面的压力测试计划以评估整个系统的健壮性和稳定性表现如何应对突发高峰流量冲击波形成立即采取相应措施加以改进完善现有架构设计思路方向. --- ### 注意事项 无论采用哪种方式去处理这个问题之前都应该做好充分准备以防万一事情变得更糟而不是更好!备份数据库和其他关键资产总是明智之举之一... ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值