python 获取某一列,并添加到数组中

该博客主要展示了如何使用pandas库在Python中读取两个Excel文件,并分别提取第三列的数据到列表中。通过`pd.read_excel()`函数读取了'审核表有,系统表没有.xlsx'和'系统表有,审核表没有.xlsx'的工作表'Sheet1',然后将数据转化为列表,存储在`reasult1`和`reasult2`中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd

#读取文件
System_Table = r'C:\Users\Lenovo\Desktop\审核表有,系统表没有.xlsx'
Check_Table = r'C:\Users\Lenovo\Desktop\系统表有,审核表没有.xlsx'

#读取文件内的表
System_sheet = pd.read_excel(System_Table,sheet_name='Sheet1')
Check_sheet = pd.read_excel(Check_Table,sheet_name='Sheet1')


System_sheet_li = System_sheet.values.tolist() #取表中的值
reasult1 = [] #表示为数组
for s_li in System_sheet_li:
 reasult1.append(s_li[2]) #在列表末尾添加新的对象,文件第三列
print(reasult1) #输出数组数据

System_sheet_li = Check_sheet.values.tolist()
reasult2 = []
for s_li in System_sheet_li:
 reasult2.append(s_li[2])
print(reasult2)

<think>好的,我现在需要帮助用户解决如何在Python中使用NumPy获取二维数组一列的最大值的问题。首先,我应该回忆一下NumPy库的相关函数,特别是处理多维数组的方法。 用户提到的是二维数组,所以应该考虑如何提取第一列的数据。在NumPy中,二维数组可以通过切片来获取特定的列。例如,arr[:,0]可以获取所有行的第0列,也就是第一列的数据。然后,使用numpy.max()函数对这个切片后的数组进行计算,就能得到第一列的最大值。 接下来,我需要确保这个方法的正确性。可能需要参考用户提供的引用内容。引用[2]中提到,使用x.shape可以获取数组的行列数,这说明用户提供的参考资料中确实涉及到了二维数组的处理。同时,引用[1]中的例子展示了如何使用np.max()计算二维数组的最大值,但用户需要的是特定列的最大值,所以需要进一步调整。 我应该分步骤说明:首先导入NumPy库,然后创建二维数组,接着用切片提取第一列,最后应用np.max()。此外,还需要考虑可能的错误情况,比如数组是否确实有至少一列,或者用户是否误用了列表而不是NumPy数组。不过根据用户的问题,他们明确提到了使用NumPy,所以可以假设他们正在正确使用数组类型。 另外,用户可能需要一个完整的示例代码,这样他们可以直接运行测试。代码应该包括导入库、定义数组、切片列、计算最大值输出结果。例如: import numpy as np arr = np.array([[1, 2], [3, 4], [5, 6]]) first_column = arr[:, 0] max_value = np.max(first_column) print("第一列的最大值为:", max_value) 这样应该能正确输出第一列的最大值5。同时,需要指出关键点,即arr[:,0]的切片方式,以及np.max()的应用。可能还需要提醒用户索引是从0开始的,因此第一列对应索引0。 最后,确保回答符合用户的要求:使用中文,结构清晰,引用正确。根据用户提供的引用,引用[1]和引用[2]都涉及NumPy处理数组最大值和二维数组的结构,所以应该在回答末尾添加引用标识。</think>在Python中使用NumPy获取二维数组一列的最大值,可以通过以下步骤实现: 1. **导入NumPy库** 确保已安装NumPy,使用`import numpy as np`导入。 2. **创建二维数组** 例如定义一个二维数组: ```python arr = np.array([[1, 4], [3, 2], [5, 6]]) ``` 3. **提取第一列数据** 通过切片操作`arr[:, 0]`获取所有行的第一列数据: ```python first_column = arr[:, 0] ``` 4. **计算最大值** 使用`np.max()`函数计算第一列的最大值: ```python max_value = np.max(first_column) ``` 完整示例: ```python import numpy as np # 定义二维数组 arr = np.array([[1, 4], [3, 2], [5, 6]]) # 提取第一列计算最大值 max_first_col = np.max(arr[:, 0]) print("第一列的最大值为:", max_first_col) # 输出:5 ``` **关键说明**: - `arr[:, 0]`中`:`表示选择所有行,`0`表示第一列的索引(NumPy索引从0开始)[^2]。 - `np.max()`可直接对切片后的数组进行操作,无需循环[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tiger.chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值