三分钟理解Python—— lambda

本文介绍了Python中的lambda表达式,它是一种匿名函数,简化了函数定义。文章通过对比def函数,阐述了lambda与map(), filter(), reduce()的结合使用,并展示了在pandas中的应用。同时,文中提到了lambda的优缺点,包括代码简洁、匿名特性,但也指出其不适用于复杂计算且可能增加维护难度。" 41259351,3021293,Android流媒体播放:vitamio开源库实现边下边播,"['Android开发', '视频流', '开源项目', '流媒体', '移动开发']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇主要是复习一下

进入标题,lambda是什么?为什么要使用lambda?

lambda表达式是一种匿名函数,对应python中的自定义函数def。

定义func函数,计算给定数x的平方

def func(x):
	return x*x

等价于

func = lambda x: x*x

用法,他就是一个函数,像正常函数那样调用就好:

func(6)

可以看到,lambda只不过是定义函数的一种高级写法,lambda简化了函数定义的书写形式。代码更为简洁。对于有些函数我们只用一次的,用lambda就十分友好,连函数名都没有。

lambda与map(), filter(), reduce()

lambda表达式返回一个函数,这个函数可以作为其他函数的参数。说起lambda,一般都是下面这个三个函数使用,常用的可以与lambda组合的内置函数有map(), filter(), reduce()。(注:python3全局命名空间中移除了reduce函数)

  • filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象。接收两个参数,
    • 如果要转换为列表,可以使用 list() 来转换。
      接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。

      注意: Pyhton2.7 返回列表,Python3.x 返回迭代器对象
  • map() 会根据提供的函数对指定序列做映射
    • 第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。
    • 注意: Pyhton2.7 返回列表,Python3.x 返回迭代器对象
  • reduce() 函数会对参数序列中元素进行累积
    • 函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。
 reduce(function, iterable[, initializer])

foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]
result = list(filter(lambda x: x % 3 == 0, foo))
result

在这里插入图片描述

for i in map(lambda x: x ** 2, [1, 2, 3, 4, 5]):
    print(i)

在这里插入图片描述
自 Python3 之后,reduce函数从全局命名空间中移除,放在了 functools模块,因为如果想正确执行,必须先导入

from functools import reduce

在这里插入图片描述

lambda与if条件判断

lambda表达式中可以插入if…else进行条件判断,如

注意: if为真时的返回结果在if前面,条件在后面:(自己手打一下下面的程序就知道了)

f = lambda x: 'even' if x%2==0 else 'odd'
# f(3)输出结果 odd

等价于

def f(x):
  	if x%2==0:  
  		return 'even'
  	else:  
  		return 'odd'

注意如果在lambda中使用if进行条件判断,则else是必须声明的,否则会引起报错。如果不返回结果可以用 else None 表示。

lambda在pandas中的使用

lambda函数常用于DataFrame或者Series对象下的map、apply、transform方法

import pandas as pd
df = pd.DataFrame({'Age': [22, 21, 22, 21, 20], 'Score': [87, 66, 79, 54, 59]})
df['Pass'] = df.apply(lambda x: 'pass' if x[1]>=60 else 'Not pass', axis=1)
#输出新列 'Pass',根据成绩判断通过与否,输出df后结果为:
  Age Score  Pass
0  22 87 pass
1  21 66 pass
2  22 79 pass
3  21 54 Not pass
4  20 59 Not pass

x为DataFrame对象,当参数axis=1时,x[1]等于第二列。

当用于Series对象时,以上代码等价于:

df['Pass'] = df['Score'].apply(lambda x: 'pass' if x>60 else 'Not pass')

在pandas中,通过apply,map, transform方法,lambda可以直接应用于Series级别的运算。

当使用applymap方法时,lambda可以应用于DataFrame级别的运算。

lamda的优缺点

lambda的优点:

不需要定义函数名(匿名函数)
代码简洁美观
适用于定义简单的计算

lambda的缺点:

只有一个运算式,不适用于复杂的计算
不够直观,难于理解,增加了维护成本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值