这篇主要是复习一下
进入标题,lambda是什么?为什么要使用lambda?
lambda表达式是一种匿名函数,对应python中的自定义函数def。
定义func函数,计算给定数x的平方
def func(x):
return x*x
等价于
func = lambda x: x*x
用法,他就是一个函数,像正常函数那样调用就好:
func(6)
可以看到,lambda只不过是定义函数的一种高级写法,lambda简化了函数定义的书写形式。代码更为简洁。对于有些函数我们只用一次的,用lambda就十分友好,连函数名都没有。
lambda与map(), filter(), reduce()
lambda表达式返回一个函数,这个函数可以作为其他函数的参数。说起lambda,一般都是下面这个三个函数使用,常用的可以与lambda组合的内置函数有map(), filter(), reduce()。(注:python3全局命名空间中移除了reduce函数)
- filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象。接收两个参数,
- 如果要转换为列表,可以使用 list() 来转换。
接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。
注意: Pyhton2.7 返回列表,Python3.x 返回迭代器对象
- 如果要转换为列表,可以使用 list() 来转换。
- map() 会根据提供的函数对指定序列做映射。
- 第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。
- 注意: Pyhton2.7 返回列表,Python3.x 返回迭代器对象
- reduce() 函数会对参数序列中元素进行累积。
- 函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。
reduce(function, iterable[, initializer])
foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]
result = list(filter(lambda x: x % 3 == 0, foo))
result
for i in map(lambda x: x ** 2, [1, 2, 3, 4, 5]):
print(i)
自 Python3 之后,reduce函数从全局命名空间中移除,放在了 functools模块,因为如果想正确执行,必须先导入
from functools import reduce
lambda与if条件判断
lambda表达式中可以插入if…else进行条件判断,如
注意: if为真时的返回结果在if前面,条件在后面:(自己手打一下下面的程序就知道了)
f = lambda x: 'even' if x%2==0 else 'odd'
# f(3)输出结果 odd
等价于
def f(x):
if x%2==0:
return 'even'
else:
return 'odd'
注意如果在lambda中使用if进行条件判断,则else是必须声明的,否则会引起报错。如果不返回结果可以用 else None 表示。
lambda在pandas中的使用
lambda函数常用于DataFrame或者Series对象下的map、apply、transform方法
import pandas as pd
df = pd.DataFrame({'Age': [22, 21, 22, 21, 20], 'Score': [87, 66, 79, 54, 59]})
df['Pass'] = df.apply(lambda x: 'pass' if x[1]>=60 else 'Not pass', axis=1)
#输出新列 'Pass',根据成绩判断通过与否,输出df后结果为:
Age Score Pass
0 22 87 pass
1 21 66 pass
2 22 79 pass
3 21 54 Not pass
4 20 59 Not pass
x为DataFrame对象,当参数axis=1时,x[1]等于第二列。
当用于Series对象时,以上代码等价于:
df['Pass'] = df['Score'].apply(lambda x: 'pass' if x>60 else 'Not pass')
在pandas中,通过apply,map, transform方法,lambda可以直接应用于Series级别的运算。
当使用applymap方法时,lambda可以应用于DataFrame级别的运算。
lamda的优缺点
lambda的优点:
不需要定义函数名(匿名函数)
代码简洁美观
适用于定义简单的计算
lambda的缺点:
只有一个运算式,不适用于复杂的计算
不够直观,难于理解,增加了维护成本