mod运算一些总结

本文探讨了负数mod的计算规则(-a)%b=b-(a%b),并介绍了分数mod的概念,通过寻找整数p使得(1+pm)%n=0,进而解决1/m mod n的问题。举例说明1/3 mod 7的计算过程,得出1/3 mod 7等于5的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 负数mod:(-a)%b=(a%b==0)?0:b-(a%b)
2 分数mod:
(1): 找到一个整数p使得 1/m +p=(1+pm)/m,使得整数(1+pm)是n的倍数 ,也即 (1+p*m) mod n=0;
(2):问题转化为1/m ≡ -p mod n ,此时只要求得-p mod n 的值就可以了
例:1/3 mod 7= ?; 1/3+2=7/3; -2 mod 7=5, 也就是1/3 mod 7= 5;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值