
论文
文章平均质量分 87
AI研思录
C9在读博士,前互联网算法工程师,人工智能研究院技术产品经理,深耕人工智能、大模型等领域的研究与落地应用。公众号:AI研思录
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Adaptive-RAG:让查询处理更智能,检索更精准!
RAG(Retrieval-Augmented Generation)通过将外部知识库的非参数化知识整合到大型语言模型中,来提升模型的回答准确性,尤其是在一些任务(如问答)中。现有的检索增强方法对于简单查询往往会产生不必要的计算开销,而对于多步骤复杂查询可能无法有效地处理,导致模型的回答不准确或者效率低下。原创 2024-12-10 12:57:14 · 616 阅读 · 0 评论 -
LightRAG:用图结构和双层检索打造更智能的RAG系统
在 RAG 系统中,生成模块的效果基于通用大语言模型的能力,而数据索引和检索对系统的效率和质量是非常重要的。为了改善检索增强生成(RAG)系统,使其能更好地整合外部知识源并提供更精准和上下文相关的回答,捕捉复杂的相互依赖关系,这篇文章提出了一种名为LightRAG的新框架。LightRAG 通过引入图结构来改进文本索引和检索过程,同时该框架采用了两阶段检索机制,首先在低级层面进行基础信息的检索,然后在高级层面探索更深层次的知识关联,提高了实体及其关系检索的效率。原创 2024-12-10 12:56:21 · 1418 阅读 · 0 评论 -
思维缓冲器 Buffer of Thought:大幅提升复杂任务推理准确率至79.4%
这篇论文提出了思维缓冲区(Buffer of Thoughts,BoT),一种新颖且多功能的思维增强推理方法,旨在提升大型语言模型的准确性、效率和鲁棒性。通过元缓冲区来存储一系列信息丰富的高级思维,即思维模板,这些模板是从跨多种任务的问题解决过程中提炼出来的。对于每个问题,推理时会先检索相关的思维模板,并根据任务模板自适应实例化任务。为了确保可扩展性和稳定性,通过缓冲区管理器来动态更新元缓冲区,从而随着解决更多任务增强元缓冲区的容量。原创 2024-12-05 21:21:41 · 1020 阅读 · 0 评论 -
颠覆传统检索:RAPTOR检索树提升检索准确率20%!
检索增强语言模型能够更好地适应世界状态的变化,并融入长尾知识。然而,现有的检索增强方只能检索几个简短的、连续的文本块,这对于需要整合文本多个部分的知识的问题是不够的,限制了它们表示和利用大规模语义结构的能力。这篇文章提出了一种新颖的方法——检索树,即考虑了广泛的主题理解,也考虑了细粒度的细节信息。通过递归地嵌入聚类和总结文本片段,从底部向上构建一个具有不同总结层次的树,来解决阅读中的语义深度和连接性问题。在推理时,使用RAPTOR模型从这棵树中进行检索,在不同抽象层次上整合信息,以跨越较长文档进行理解。原创 2024-11-25 21:01:30 · 811 阅读 · 0 评论