激光SLAM理论与实践(一)--激光SLAM简要介绍

本文是关于激光SLAM的学习笔记,介绍了激光SLAM的基本概念、发展和应用趋势,包括图优化SLAM、滤波器方法、点云匹配算法、回环检测以及2D激光SLAM的关键技术和研究趋势。重点讨论了点云匹配的ICP、PI-ICP和CSM方法,以及回环检测在cartographer中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

疫情原因一直在家,所以把之前学习的某蓝学院的激光SLAM的教程做一个学习笔记记录一下。话不多说,直接开始!

第一章主要是是激光SLAM的基本脉络的简介,综述类的介绍,主要分为以下四部分,讲了激光SLAM的发展和应用趋势。
在这里插入图片描述
在这里插入图片描述
从另一个角度对SLAM进行的分类,静态环境和动态环境:
在这里插入图片描述
图优化的SLAM(重点主流):前端后端很关键
在这里插入图片描述
图优化的具体例子:消除误差项
在这里插入图片描述
基于滤波器的SLAM方法:只在意当前的位姿,所以环境一大就会有很严重的误差。典型的就是卡尔曼滤波,经典的开源SLAM就是gmapping。
在这里插入图片描述
激光SLAM的主要组成:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值