AITM - 多任务模型之顺序依赖性建模(美团)

论文提出了一种名为AITM的框架,用于解决金融场景下(如信用卡业务)的多任务顺序依赖问题。在ESMM基础上,通过自适应信息传输模块(AIT)利用self-attention来捕捉不同转化阶段的依赖关系。该模型已在美团APP中应用,以处理用户多步转化过程中的序列依赖和类别不平衡问题,特别是在信用卡的曝光、点击、申请、核卡和激活五个阶段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising

  • 论文发表在 KDD-2021。论文做的是金融场景下(信用卡业务)的顺序依赖性多任务问题解决框架。

  • 在ESMM的基础上,利用不用任务之间的顺序依赖关系,文章提出了一种自适应信息模型传输多任务AITM(Adaptive Information Transfer Multi-task)框架。基于AIT模块,利用self-attention自适应地提取不同转换阶段的传输信息进行融合输出。现已应用于美团app中。

1、动机与挑战(信用卡业务广告)

  • 用户多步转化过程中的路径序列依赖更长。
  • 在多步转化的长序列依赖中(前一步骤发生了,后一步骤才可能发生),正反馈(正样本)是逐步稀硫的,类别不平衡越来越严重。
    信用卡业务的5个阶段如下,一般来说阶段越低,转换效率越高。业务中,关心的是核卡成功率和激活成功率。
  • 曝光
  • 点击
  • 申请
  • 核卡(授信):意味着用户信用良好,通过申请并被授予了一定的信用卡额度。实时判断
  • 激活:用户在授信并且收到邮寄的信用卡之后,可以激活信用卡并使用。是否激活的标签通常比较难获得,因为信用卡邮寄需要一定的时间,而且用户主动去激活也需要一定的表现期,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值