-
Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising
-
论文发表在 KDD-2021。论文做的是金融场景下(信用卡业务)的顺序依赖性多任务问题解决框架。
-
在ESMM的基础上,利用不用任务之间的顺序依赖关系,文章提出了一种自适应信息模型传输多任务AITM(Adaptive Information Transfer Multi-task)框架。基于AIT模块,利用self-attention自适应地提取不同转换阶段的传输信息进行融合输出。现已应用于美团app中。
1、动机与挑战(信用卡业务广告)
- 用户多步转化过程中的路径序列依赖更长。
- 在多步转化的长序列依赖中(前一步骤发生了,后一步骤才可能发生),正反馈(正样本)是逐步稀硫的,类别不平衡越来越严重。
信用卡业务的5个阶段如下,一般来说阶段越低,转换效率越高。业务中,关心的是核卡成功率和激活成功率。 - 曝光
- 点击
- 申请
- 核卡(授信):意味着用户信用良好,通过申请并被授予了一定的信用卡额度。实时判断
- 激活:用户在授信并且收到邮寄的信用卡之后,可以激活信用卡并使用。是否激活的标签通常比较难获得,因为信用卡邮寄需要一定的时间,而且用户主动去激活也需要一定的表现期,