算法分析与实践_Prim算法构造最小生成树

本文探讨了如何在无向连通带权图中找到耗费最小的生成树。通过Prim算法,每次选择与已选节点相连的权值最小的边,逐步构建最小生成树,避免形成闭合回路。文章提供了详细的解析、设计思路,并附有源码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题

设G=(V,E)是无向连通带权图,如果G的一个子图G’是一棵包含G的所有顶点的树,则称G’为G的生成树。生成树的各边权的总和称为该生成树的耗费,求在G的所有生成树中耗费最小的最小生成树。

二、解析

在带权连通图中,每次找与之连线权值最小的顶点,将该点加入最小生成树集合中并构造,直到最后得到一颗最小生成树。
注意:相同权值任选其中一个即可,但是不允许出现闭合回路的情况。
如下图:在G<V,E>中,共有6个顶点v1-v6,10条边e1-e10。
在这里插入图片描述

三、设计

int Prim(int graph[][MAX], int n)
{
   
   
	int lowcost[MAX];//lowcost[i]记录以i为终点的边的最小权值,当lowcost[i]=0时表示终点i加入生成树
	int mst[MAX];//mst[i]记录对应lowcost[i]的起点,当mst[i]=0时表示起点i加入生成树
	int i, j, min, minid, sum 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值