PagedAttention 的实现中,每个块的大小是一个关键参数。块越大,查找效率越高,但容易浪费内存;块越小,内存利用率更高,但管理开销也更大。根据 vLLM 的开源实现,默认的块大小是 512 tokens。这个值在大多数情况下能平衡内存利用率和性能开销,但可以根据实际应用场景进行调整。对于长序列任务,可以考虑更大块;对于更灵活的动态任务,可以选择较小的块。
块大小的核心影响
GPU 内存利用率:块越大,内存分配越接近传统连续分配;块越小,内存碎片化会减少,但管理开销变大。
注意力计算时的性能:块越小,查找和加载块的次数越多,可能带来性能开销;块越大,查找效率更高,但可能浪费内存。
块大小对内存使用的两大影响:
1️⃣ 碎片化问题
块越大,未使用的部分会浪费更多内存,导致碎片化严重。
每个块的大小是固定的,例如 512 tokens。如果序列长度超过一个块的容量,将分配一个新块。但为了避免内存浪费,PagedAttention 支持 块的重用,即未使用的块可以分配给新的序列,减少碎片化。
2️⃣ 动态内存分配的灵活性
块越小,内存分配就越灵活,因为可以根据序列长度的变化,按需分配更多的小块。
但块越小,GPU 每次解码时的查找和加载开销也会变大。
为什么不能用一个超小的块?
虽然小块能减少内存浪费,但也会带来管理开销:
每次计算注意力时都要查找多个块,导致 GPU 查找和加载块的次数变多。
注意力计算的 kernel 实现会变复杂,因为需要跨多个块查找 KV Cache。
因此,块大小不能无限小,必须找到一个平衡点。
下图展示了不同块大小对 内存使用率 和 碎片化情况的影响: