使用tensorflow搭建图像识别模型SSD之训练自己模型

前言

结合上一篇csdn,本此模型使用上一篇博客生成的数据集合。其中包括四个文件labemap.pbtxt,train.tfrecord,test.tfrecord,如有不了解的,请看本人上一篇博客。
https://blog.csdn.net/weixin_43670245/article/details/103896783
搭建环境
cuda 10 +cudnn7.4.2.24+tensorflow 1.14-gpu+ python 3.7.5

搭建流程

下载所用训练模型

下载训练模型地址: https://github.com/tensorflow/models
然后将 models文件拷贝到tensorflow下,此处本人使用Win 10,python pip 安装,故而目录在:python安装路径、Python37\Lib\site-packages\tensorflow下,本人一般使用git,直接clone 一份,会比较快,结果如图
在这里插入图片描述
下载编译工具:https://github.com/protocolbuffers/protobuf/releases?after=v3.3.2
下载完,解压后将protoc.exe放入C:\Windows下。
打开cmd并运行 protoc object_detection/protos/.proto --python_out=.
其中 object_detection/protos/
.proto 是指向训练模型地址的:python安装路径\Python37\Lib\site-packages\tensorflow\models\research\object_detection\protos这个地址根据自己情况而定,如图
在这里插入图片描述
下载算法模型https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md自己任选一个模型,为了更好适应检测效果,本人使用ssd,该注意的是,有些算法模型不适用本人的开发环境,所以有些算法模型跑不了。多换几个试试。这个模型和上面的训练模型是不同的,不要混为一谈。然后解压,地址随意。
在这里插入图片描述

修改必要配置

修改上述解压后的算法模型的部分配置 记事本或notepad打开 pipeline.config
修改 num_class:1,本人只使用了一个识别模型,故而只有一个分类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值