贪心
贪心是什么
贪心算法贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?
指定每次拿最大的,最终结果就是拿走最大数额的钱。每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。
再举一个例子如果是有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。
贪心算法套路
说实话贪心算法并没有固定的套路。那么如何能看出局部最优是否能推出整体最优呢?有没有什么固定策略或者套路呢?不好意思,也没有! 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。
刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试贪心
那么刷题的时候什么时候真的需要数学推导呢?
例如这道题目:链表:环找到了,那入口呢? (opens new window),这道题不用数学推导一下,就找不出环的起始位置,想试一下就不知道怎么试,这种题目确实需要数学简单推导一下
贪心解题思路
贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
做题时只要想清楚局部最优是什么,如果推导出全局最优,其实就够了。
贪心没有套路,说白了就是常识性推导加上举反例。
题目
455. 分发饼干 - 力扣(LeetCode)
选择从哪个孩子开始给饼干作为局部最优,让大饼干给胃口大的孩子
局部最优可以推出全局最优,没有反例可以试一试贪心
胃口与饼干排序,采用田忌赛马策略,For 对于每个人,用 while 寻找合适的饼干
也可以用小饼干满足小孩
// 方法1
int findContentChildren(vector<int>& g, vector<int>& s) {
int res = 0;
int idx = s.size() - 1;
std::sort(g.begin(), g.end());
std::sort(s.begin(), s.end());
// 根据人找饼干 从大到小
for (int i = g.size() - 1; i >= 0; --i) {
// 从最大规律满足
if (idx >= 0 && s[idx] >= g[i]) {
res++;
idx--;
}
}
return res;
}
// 方法2
int findContentChildren(vector<int>& g, vector<int>& s) {
std::sort(g.begin(), g.end());
std::sort(s.begin(), s.end());
int idx = 0;
// 饼干满足人
for (int i = 0; i < s.size(); ++i) {
// 从最小胃口开始满足
if (idx < g.size() && g[idx] <= s[i]) {
idx++;
}
}
return idx;
}
376. 摆动序列 - 力扣(LeetCode)
局部最优单调坡的数字都删掉,全局最优留下峰值
遇到摆动++,单调坡 continue
1 数组返回 1
2 数组 Res 从 1 开始,在 2 元素左边添加平坡(preDiff=0)组成 3 个摆动情况
int wiggleMaxLength(vector<int>& nums) {
int preDiff = 0; // 默认左侧为0(相当于2大小数组填充了左边的平坡)
int curDiff = 0;
int res = 1;
// 1大小数组的情况
if (nums.size() == 1) return 1;
for (int i = 0; i < nums.size() - 1; ++i) {
// 默认右侧数值(2大小数组以上)为一个摆动
curDiff = nums[i+1] - nums[i];
if (preDiff >= 0 && curDiff < 0 || curDiff > 0 && preDiff <= 0) {
res++;
preDiff = curDiff; // 只在检测摆动情况时更新Diff
}
}
return res;
}
53. 最大子数组和 - 力扣(LeetCode)
当当前总和为负数时,不如从新开始新的序列
int maxSubArray(vector<int>& nums) {
int curSum = 0;
int maxSum = INT_MIN;
for (int i = 0; i < nums.size(); ++i) {
// 当前和为负数,不如直接舍弃当前和,寻找新的数组
if (curSum < 0) curSum = 0;
curSum += nums[i];
maxSum = std::max(maxSum, curSum);
// 可以记录当前索引i作为开始点与终止点
}
return maxSum;
}