代码随想录算法训练营 Day27 贪心Ⅰ 分饼干 摆动序列 最大子序列和

贪心

贪心是什么

贪心算法贪心的本质是选择每一阶段的局部最优,从而达到全局最优
例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?
指定每次拿最大的,最终结果就是拿走最大数额的钱。每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。
再举一个例子如果是有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。

贪心算法套路

说实话贪心算法并没有固定的套路。那么如何能看出局部最优是否能推出整体最优呢?有没有什么固定策略或者套路呢?不好意思,也没有! 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。
刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试贪心
那么刷题的时候什么时候真的需要数学推导呢?
例如这道题目:链表:环找到了,那入口呢? (opens new window),这道题不用数学推导一下,就找不出环的起始位置,想试一下就不知道怎么试,这种题目确实需要数学简单推导一下

贪心解题思路

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

做题时只要想清楚局部最优是什么,如果推导出全局最优,其实就够了。
贪心没有套路,说白了就是常识性推导加上举反例

题目

455. 分发饼干 - 力扣(LeetCode)
选择从哪个孩子开始给饼干作为局部最优,让大饼干给胃口大的孩子
局部最优可以推出全局最优,没有反例可以试一试贪心
胃口与饼干排序,采用田忌赛马策略,For 对于每个人,用 while 寻找合适的饼干
也可以用小饼干满足小孩

// 方法1
int findContentChildren(vector<int>& g, vector<int>& s) {
	int res = 0;
	int idx = s.size() - 1;
	std::sort(g.begin(), g.end());
	std::sort(s.begin(), s.end());
	// 根据人找饼干 从大到小
	for (int i = g.size() - 1; i >= 0; --i) {
		// 从最大规律满足
		if (idx >= 0 && s[idx] >= g[i]) {
			res++;
			idx--;
		}
	}
	return res;
}
// 方法2
int findContentChildren(vector<int>& g, vector<int>& s) {
	std::sort(g.begin(), g.end());
	std::sort(s.begin(), s.end());
	int idx = 0;
	// 饼干满足人
	for (int i = 0; i < s.size(); ++i) {
		// 从最小胃口开始满足
		if (idx < g.size() && g[idx] <= s[i]) {
			idx++;
		}
	}
	return idx;
}

376. 摆动序列 - 力扣(LeetCode)
局部最优单调坡的数字都删掉,全局最优留下峰值
遇到摆动++,单调坡 continue
1 数组返回 1
2 数组 Res 从 1 开始,在 2 元素左边添加平坡(preDiff=0)组成 3 个摆动情况

在这里插入图片描述

int wiggleMaxLength(vector<int>& nums) {
	int preDiff = 0; // 默认左侧为0(相当于2大小数组填充了左边的平坡)
	int curDiff = 0;
	int res = 1;
	// 1大小数组的情况
	if (nums.size() == 1)  return 1;
	for (int i = 0; i < nums.size() - 1; ++i) {
		// 默认右侧数值(2大小数组以上)为一个摆动
		curDiff = nums[i+1] - nums[i];
		if (preDiff >= 0 && curDiff < 0 || curDiff > 0 && preDiff <= 0) {
			res++;
			preDiff = curDiff; // 只在检测摆动情况时更新Diff
		}
	}
	return res;
}

53. 最大子数组和 - 力扣(LeetCode)
当当前总和为负数时,不如从新开始新的序列

int maxSubArray(vector<int>& nums) {
	int curSum = 0;
	int maxSum = INT_MIN;
	for (int i = 0; i < nums.size(); ++i) {
		// 当前和为负数,不如直接舍弃当前和,寻找新的数组
		if (curSum < 0) curSum = 0;
		curSum += nums[i];
		maxSum = std::max(maxSum, curSum);
		// 可以记录当前索引i作为开始点与终止点
	}
	return maxSum;
}
### 代码随想录算法训练营 Day20 学习内容与作业 #### 动态规划专题深入探讨 动态规划是一种通过把原问题解为相对简单的子问题的方式来求解复杂问题的方法[^1]。 #### 主要学习内容 - **背包问题系列** - 背包问题是典型的动态规划应用场景之一。这类题目通常涉及给定容量的背包以及一系列具有不同价值重量的物品,目标是在不超过总容量的情况下最大化所选物品的价值。 - **状态转移方程构建技巧** - 构建合适的状态转移方程对于解决动态规划问题是至关重要的。这涉及到定义好dp数组(或表格),并找到从前一个状态到下一个状态之间的关系表达式[^2]。 - **优化空间复杂度方法** - 对于某些特定类型的DP问题,可以采用滚动数组等方式来减少所需的空间开销,从而提高程序效率[^3]。 #### 实战练习题解析 ##### 题目:零钱兑换 (Coin Change) 描述:给定不同面额的硬币 coins 一个总金额 amount。编写函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 `-1`。 解决方案: ```python def coinChange(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float('inf'): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[-1] if dp[-1] != float('inf') else -1 ``` 此段代码实现了基于自底向上的迭代方式解决问题,其中 `dp[i]` 表示达到金额 `i` 所需最小数量的硬币数目[^4]。 ##### 题目:完全平方数 (Perfect Squares) 描述:给出正整数 n ,找出若干个不同的 完全平方数 (比如 1, 4, 9 ...)使得它们的等于n 。问至少需要几个这样的完全平方数? 解答思路同上一题类似,只是这里的“硬币”变成了各个可能的完全平方数值。 ```python import math def numSquares(n): square_nums = set([i*i for i in range(int(math.sqrt(n))+1)]) dp = [float('inf')] *(n+1) dp[0] = 0 for i in range(1,n+1): for sq in square_nums: if i>=sq: dp[i]=min(dp[i],dp[i-sq]+1); return dp[n]; ``` 这段代码同样运用了动态规划的思想去寻找最优解路径,并利用集合存储所有小于等于输入值的最大平方根内的平方数作为候选集[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值