车辆运动轨迹数据集

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/souvenir001/article/details/52180335

一、SanFrancisco Bay Area

1.数据集包括500辆出租车近30天的(2008年5月17日-6月10日)行驶数据

2.车辆行驶数据的采样时间间隔1min

3.车辆轨迹数据包含:车辆ID-经纬度(位置)-是否载客-时间

4.无瞬时速度

下载链接:点击打开链接

二、Shanghai

1.数据集包括4千辆出租车24个小时(07年2月20日)的行驶数据

2.车辆行驶数据的采样时间间隔为1min

3.车辆轨迹数据包含:车辆ID-Time-经纬度-速度-是否载客

下载链接:点击打开链接

三、Roma

1.数据集包括320辆出租车在罗马市区一个月(14年2月1日-3月2日)的行驶数据

2.车辆行驶数据采样时间间隔为7s

3.车辆轨迹数据包含:车辆ID-时间-经纬度

下载链接:点击打开链接


四、France

1.数据集为法国克雷泰伊的一个环形道路上早上两小时(7.00-9.00)和晚上两小时(17.00-19.00)的车辆行驶数据

2.数据采样时间间隔为1s

3.车辆轨迹数据包含:车辆ID-时间-车辆类型-坐标-车辆速度

下载链接:点击打开链接

 

环形通道示意图:


五、Italy,Bologna

1.数据集为意大利博洛尼亚地区某个工作日早上8.00-9.00超过22000辆车的车辆行驶数据

2.数据采样时间间隔为1s

3.车辆轨迹数据包括:时间-车辆ID-经纬度-速度

下载链接:点击打开链接

 

博洛尼亚地区道路示意图:


六、Spain,Madrid

1.数据集为西班牙马德里附近的两条高速公路(A6和M40)上一个工作日的上午8.30-9.00和11.30-12.00的车辆行驶数据

2.数据集中每辆车每经过500米会有一条数据记录

下载链接:点击打开链接


七、California

1.数据集为加利福尼亚两条高速公路上不同交通密度的车辆行驶数据

2.数据采样时间间隔为1s

3.车辆轨迹数据包含:时间-车辆ID-经纬度-速度

下载链接:点击打开链接


八、Luxembourg

1.数据集为卢森堡2200平方公里地区某个工作日11小时的车辆行驶数据

2.数据采样时间间隔为1s

3.车辆轨迹数据包含:时间-车辆ID-经纬度-速度

下载链接:点击打开链接

 

卢森堡地区道路示意图:


九、Germany,Cologne

1.数据集为德国科隆400平方公里地区某个工作日上午6.00-8.00的车辆行驶数据

2.数据采样时间间隔为1s

3.车辆轨迹数据包含:时间-车辆ID-经纬度-速度

下载链接:点击打开链接

### MATLAB 中车辆轨迹数据集的处理与分析 对于车辆轨迹数据集的处理和分析,在MATLAB环境中可以利用多种内置函数以及自定义算法来实现复杂的数据解析。下面介绍一种典型的方法,该方法涵盖了读取、预处理、特征提取到最终可视化的全过程。 #### 1. 数据导入 假设有一个CSV文件包含了多个车辆随时间变化的位置坐标(X,Y),可以通过`readtable()`命令轻松加载这些数据: ```matlab data = readtable('vehicle_trajectories.csv'); ``` 此操作会创建一个表格对象,其中每一列代表特定属性,比如时间戳、ID号、经度、纬度等[^4]。 #### 2. 预处理 由于实际收集过程中可能存在噪声或异常值,因此有必要先清理原始记录。这里推荐使用移动平均滤波器平滑路径,并通过删除超出合理范围的速度值去除离群点: ```matlab % 计算速度作为相邻两点间距离除以采样间隔 speeds = sqrt(diff(data.X).^2 + diff(data.Y).^2)./diff(data.Time); % 移动窗口大小设定为5个样本点 windowSize = 5; smoothedSpeeds = movmean(speeds, windowSize); validIndices = smoothedSpeeds < thresholdValue; cleanData = data(validIndices,:); ``` 此处引入了阈值参数`thresholdValue`用于界定正常行驶状态下的最大允许瞬时速率;同时应用了长度为五的时间窗来进行简单的一维卷积运算,从而达到降噪目的[^4]。 #### 3. 特征计算 经过初步净化后的序列能够更准确地反映真实运动模式。接下来可进一步挖掘诸如加速度分布、转弯角度统计量之类的高层次特性指标: ```matlab accelerations = diff(smoothedSpeeds)/diff(cleanData.Time(2:end)); turnAngles = atan2d(diff(cleanData.Y), diff(cleanData.X)); figure; subplot(2,1,1); histogram(accelerations,'Normalization','probability'); title('Acceleration Distribution'); subplot(2,1,2); rose(turnAngles*pi/180); title('Turn Angle Histogram'); ``` 上述代码片段展示了如何绘制直方图表示加速情况的概率密度估计,以及玫瑰图呈现转向行为的角度频次谱型态[^4]。 #### 4. 可视化展示 最后一步则是将所有成果汇总成直观易懂的形式供后续解读参考。考虑到地理信息系统的特点,建议借助Google Earth API或其他第三方插件构建交互式的三维场景漫游效果,不过最基础的方式还是直接调用plot系列指令完成二维平面投影示意: ```matlab uniqueIDs = unique(cleanData.ID); colors = lines(length(uniqueIDs)); for i=1:length(uniqueIDs) idx = cleanData.ID == uniqueIDs(i); plot(cleanData.X(idx), cleanData.Y(idx),'Color', colors(i,:)); hold on; end xlabel('Longitude (\circ)'); ylabel('Latitude (\circ)'); title('Vehicle Trajectory Visualization'); legend(arrayfun(@(x)sprintf('Car #%d', x), uniqueIDs, 'UniformOutput', false)); hold off; ``` 这段脚本实现了根据不同个体分配颜色标记并依次绘出其完整的行动路线的功能,使得整体布局清晰有序且便于对比观察各目标间的相对位置关系[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值