驻点和极值点的关系

本文探讨了数学分析中驻点与极值点的概念及其区别,指出两者并非完全等同,驻点可能为极值点,但一阶不可导点也可能成为极值点,如绝对值函数在x=0时的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

驻点和极值点的关系怎么说呢:互相并不完全是充分必要条件
驻点:可导极值点叫驻点
极值点:存在驻点时并不一定是极值点 而且也有可能是一阶不可导点
驻点和极值点互相推导本身存在着一种看似紧密但是并不紧密的关系
比如|x| 当x=0时候 他是驻点么 并不是因为他虽然是极小值点 但是他并不可导 所以并不是驻点
x^3当x=0的时候 他存在极值么 他是驻点没错 但是他并不是极值点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值