卷积输出特征图大小计算公式

卷积神经网络中,计算输出尺寸涉及到的关键因素包括滤波器(filter)大小、padding、步幅(stride)。若无padding,输出尺寸为n-f+1;若有padding,则为n+2p-f+1。为了保持输入与输出尺寸一致,padding应设为(f-1)/2。当有步幅时,输出尺寸为((n+2p-f)/stride)+1,非整数则向下取整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果是没有padding填充,那么公式为n-f(滤波器大小)+1
如果有padding填充,那么公式为 n+2p-f+1
如果想要输出大小和输入大小尺寸一样,那么就让padding=(f-1)/2
如果添加了步幅 stride的话,那么公式为(n+2p-f)/stride+1 ,如果商不是整数,那么向下取整

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值